UNIVERSITAS TOMO

SALIAT EDITORES, S.A.
BARCELONA•MADRID•BUENOS AIRES•MEXICO•CARACAS•BOGOTA• QUITO•SANTIAGO•RIO DE JANEIRO
(c) 1971. Salvat Editores, S.A. Calle Mallorca, 41-49, Barcelona

Depósito legal: B. 35.510-1971
Impresión: Imprenta Hispano-Americana, S.A. Calle Mallorca, 51, Barcelona. 1971
Printed in Spain

ÍNDICE

El universo y la Tierra
Galaxias y estrellas Antonio Paluzíe 36
Estrellas y evolución estelar fuan Martorell 124
Estructura y evolución de las galaxias
El origen del sistema solar Evry Schatzman 284Antonio Rius206
La materia y la energía
Los átomos Pedro Puigdoménech 20
Los elementos químicos Pedro Puigdoménech 72
Las sociedades de átomos faime Casabó 172
Los estados de la materia faime Casabó 244
La vida
La biosfera Arturo Compte 58
Los organismos y su medio Arturo Compte 94
Dinámica de poblaciones María Rosa Miracle 140
Cadenas alimenticias y pirámides ecológicas fuan Puigdefábregas 236
El hombre
Fecundación y nidación Fosé María Mateu 46
Desarrollo del feto en el claustro materno fosé María Mateu 100El nacimiento del niño
El crecimiento
Fosé María Mateu 200
Fosé María Francés 276

Los átomos

Pedro Puigdoménech

El 6 de agosto de 1945 una escuadrilla de aviones americanos se acercaba a la ciudad japonesa de Hiroshima. En uno de ellos, una superfortaleza B-29 llamada "Enola Gay", se encontraba un objeto único en la historia: la primera bomba atómica que iba a ser utilizada con fines militares. Eran las 8,15 de la mañana. Hiroshima, desprevenida, aparecía tranquila, inerme. Sus habitantes ignoraban que la alarma aérea que se producía no era rutinaria. A los pocos segundos de ser lanzada la bomba, se elevó sobre Hiroshima un hongo de fuego que se llevó consigo más de 62.000 edificios de la ciudad, dejando inutilizables otros 6.000 . Los muertos eran alrededor de 75.000 ; los heridos, muchos de ellos con graves quemaduras, sobrepasaban los 70.000 , y presentaban heridas que la medicina no había conocido en toda su historia. En total, los muertos representaron un 50% de la población. Todavía hoy numerosas personas sufren en sus cuerpos los daños ocasionados por la espantosa explosión.

El trágico balance que siguió a esta explosión, y a la que tres días después sufrió Nagasaki, dio a conocer a todos los hombres una nueva e inagotable fuente de energía: la energía nuclear. El efecto producido por la primera bomba atómica era el equivalente a 20.000 toneladas de trinitrotolueno (TNT), el más poderoso explosivo químico, y había sido producido con unos pocos kilos de uranio preparados durante años de laboriosas investigaciones en los laboratorios.

Desde aquel día de agosto de 1945, las palabras "atómico", "átomo" y "nuclear" han sido consideradas como sinónimos de destrucción. Sin embargo, el concepto de átomo ha sido uno de los más fecundos de la historia de la ciencia.

[^0]
La idea de los átomos

Hoy sabemos que los átomos son los constituyentes de la materia, que todo está formado por átomos y que éstos almacenan en su interior cantidades inmensas de energía que puede liberarse. Sin embargo, nadie ha visto un átomo. ¿Cómo es posible que los científicos estén tan seguros de su existencia?

A menudo por la noche hemos oído pasar un avión por encima de nosotros. Pero de hecho lo único que percibimos es un ruido particular y quizás unas luces de colores intermitentes. En principio no podemos tener evidencia del aparato; disponemos de muy poca información sobre él. Pero es seguro que la "hipótesis" más útil para explicar el fenómeno del ruido y de las luces intermitentes es que allí arriba hay un avión.

Con los átomos no tenemos las evidencias que se podrían tener en el caso que hemos supuesto, pero ocurre algo parecido. Nadie los ha visto, pero hay pruebas de su existencia. Y la mejor de ellas es que los átomos nos proporcionan la manera más sencilla de explicar todos los hechos de la física y de la química.

La idea de los átomos no es moderna. Hace más de 2.300 años un griego, llamado Demócrito, ya dijo que todas las cosas estaban hechas de átomos. El sabía, como todos nosotros, que una gran piedra puede dividirse en otras más pequeñas, que éstas también pueden partirse hasta conseguir una arenilla, y que ésta puede aún molerse hasta llegar a un polvo fino. Demócrito pensaba que este proceso debía poder continuarse, hasta llegar a unas partículas tan pequeñas que no se pudiesen ya dividir. A estas partículas las llamó átomos, palabra que, en griego, significa indivisibles. Supuso que todas las cosas estarían formadas por átomos, unidos entre sí mediante unos ganchos.

La hipótesis de Demócrito no fue aceptada por todos, y aunque durante siglos hubo atomistas como Epicuro, Gassendi, Newton y otros, la verdad es que con los átomos de Demócrito sólo podía especularse. En principio, esta teoría carecía de experimentación, de una sólida base de observaciones, datos y cálculos.

Abstract

El "punto cero" antes y después de la explosión de la bomba atómica sobre Hiroshima el 6 de agosto de 1945. Los círculos distan entre sí unos 250 m .

Buscando átomos

¿Cómo recoger hoy evidencias de los átomos? Lo primero que se nos ocurre es coger un microscopio bien potente, a ver qué encontramos. El mundo que descubrimos es algo fantástico. Materiales que nos parecían lisos y pulidos aparecen rugosos, con grietas y formados por pequeñas partículas de muchos colores. Nos ocurre lo mismo que al ver una playa desierta. Desde lejos nos parece de un uniforme color amarillento. Al acercarnos vemos que está formada por pequeños granitos de diferentes formas y colores. Lo mismo ocurre con la mayor parte de los materiales que usamos todos los días.

Pero si no nos conformamos con un microscopio óptico corriente y usamos un microscopio electrónico, veremos el tamaño de uno de estos granitos aumentado más de un millón de veces. Las partículas que antes aparecían uniformes se nos muestran otra vez divididas. Sin embargo, ahora presentan en general unas formas mucho más regulares, como cristalitos o como pequeñas estructuras bien ordenadas.

Es imposible aumentar más la imagen que nos proporciona el microscopio electrónico, aunque ésta es ya suficiente. Hemos visto que en los cuerpos sólidos las agrupaciones de centenares de átomos se distribuyen ordenadamente en formas regulares. Y podemos predecir que los átomos han de ser pequeñísimos y estar en gran número. Por eso resulta imposible verlos. Sin embargo, hoy se han ideado procedimientos para medirlos y contarlos. No uno a uno, claro está, sino a través de métodos indirectos.

Fotografiar los átomos

Uno de los experimentos que contribuyer forma decisiva a que la teoría atómica fuese ace tan universalmente como lo es hoy fue el que r el físico alemán Max von Laue en 1912.

El interés de este experimento fue doble. En to, se trataba, primero, de demostrar que los ra: eran de naturaleza análoga a la luz y, segunda los cristales estaban formados por redes de át ocupando posiciones fijas.

Se sabía hacía tiempo que, al atravesar un: la luz interfiere consigo misma produciendo un guras conocidas como figuras de difracción. Pero que los rayos X las produjeran a su vez, se deb contrar una red que fuera de malla tupidísim genial idea de Laue fue utilizar la red de átomos cristal para producir la difracción de los ray

El experimento fue un éxito rotundo, y Laue bó, sin lugar a dudas, que los sólidos están forn por redes de pequeñísimas partículas y que los ray son de naturaleza ondulatoria, como la luz. Así s bía encontrado un efecto directo de la presencia c átomos. Lo que ocurre es que son demasiado p ños para tener una experiencia directa de ellos.

Al mismo tiempo, su pequeñez hace que estér sentes por todas partes en números de magnil de comprensión difícil. Se han hecho diversas com ciones para darnos una idea de este grandísimo n ro. Se ha dicho que si toda la actual població mundo se dedicase durante toda su vida a ci átomos a razón de uno cada segundo, al morir s brían contado los átomos de... una punta de al También se ha dicho que en un kilo de hierro ocupa el volumen de un pequeño vaso- hay ta mero de átomos que, puestos en fila india, darían ticinco millones de vueltas a la Tierra.

El interior de los átomos

Los átomos de la física moderna se parecen muy poco a los átomos de los antiguos: no son indivisibles ni macizos, como pensaba Demócrito. Al contrario, la mayor parte del interior de un átomo está vacía.

Los átomos tienen dos partes muy claramente diferenciadas: una corteza y un núcleo. La corteza está formada por unas partículas que se denominan electrones y que giran rápidamente alrededor del núcleo. Si el núcleo fuera del tamaño de un garbanzo y lo pusiéramos en el centro de un campo de fútbol, el lugar por donde el electrón más cercano pasase con mayor frecuencia estaría en la primera fila de espectadores situada detrás de las porterías. Estos electrones originan las reacciones químicas y la corriente eléctrica.

El átomo es como un pequeño sistema solar, pero mucho más complicado. En primer lugar, porque en el átomo puede haber muchos más "planetas"; el uranio, por ejemplo, tiene 92 electrones en su corteza. En segundo lugar, porque no podemos determinar perfectamente las órbitas de los electrones, como podemos hacer con los planetas, sino que su comportamiento es mucho más complejo.

El núcleo ofrece aún mayor complejidad. En éste se encuentra casi toda la masa del átomo. Antes se creía que el núcleo del átomo era macizo. Sin embargo, también el núcleo está prácticamente vacío; incluso en ciertos casos los electrones pueden penetrar en su interior.

En el núcleo hay varias clases de partículas, que están sometidas a las fuerzas más potentes que se conocen. La mayor parte de las cuestiones que plantean las partículas del núcleo no están bien resueltas, y acaparan el interés de los físicos actuales. Al chocar estas partículas entre sí, sometidas a grandes energías, aparecen nuevas partículas. De éstas se han hallado ya más de cien tipos. Muchas se desintegran en otras en pequeñísimas fracciones de segundo.

Pero, de todas ellas, cinco son más estables: el electrón, que forma la corteza de los átomos, el fotón

Para el estudio de la materia existen métodos de resolución progresiva que nos descubren la regular disposición de átomos y moléculas. Arriba, microfotografía del bronce obtenida con el microscopio óptico. En segundo lugar, virus del mosaico del tabaco visto al microscopio electrónico; cada bola corresponde a una gran molécula orgánica aumentada 133.000 veces. A continuación, imagen producida por la difracción de electrones a través de una sustancia cristalina, que nos indica la colocación de los átomos en ella. Finalmente, fotografía de una punta de wolframio conseguida por el microscopio de campo iónico, con un aumento de unos dos millones de veces; cada punto luminoso corresponde a un átomo.

Los cuerpos radiactivos pueden emitir espontáneamente tres tipos de radiación (α, β y γ) que tienen distinta capacidad de penetración en la materia.

Los grandes aceleradores de partículas, como el ciclotri de la universidad de California (arriba), permiten el estudio de las partículas elementales; éstas y sus interacciones (en el centro) pueden ser detect en cámaras de burbujas como la del CERN.
y el neutrino, que son partículas de masa nula, protón y el neutrón, que son las partículas que for los núcleos. Tan grandes son las tensiones en el i rior de los núcleos que, al partirlos, se liberan enor cantidades de energía; entonces aparecen los efe que pueden aprovecharse, por ejemplo, en las trales nucleares, o malgastarse en bombas atómi

De todas formas, vistos desde fuera, los áto no presentan tantas complicaciones. Para estu los procesos químicos y la mayoría de los fenóme físicos no importa lo que ocurre de corteza para a tro. Se considera a menudo los átomos como unas tículas pequeñísimas que pueden unirse, pueden car y pueden lanzar a veces sus electrones. sabemos que no son esféricos ni son macizos, algo muy diferente: los átomos, y por ello, todos objetos, incluidos nosotros, son un mundo casi abs tamente vacío, mucho más vacío que el espacio as nómico por donde se mueve la Tierra.

La radiactividad natural

Uno de los hechos que permitieron el estudi los átomos y averiguar de qué están compuestos fi descubrimiento por Becquerel de la radiactividad tural en 1896. Este científico estaba realizando e: rimentos sobre la fosforescencia de las sales de ura Cierto día Becquerel guardó los cristales de la sa uranio envueltos en un papel negro junto a unas pl: fotográficas. Días después, al revelarlas, enco: con gran sorpresa que las placas estaban veladas. guna fuerte radiación debía haber incidido sobre e Y sospechó que esto sólo podía proceder del ura En efecto, trituró, calentó, hizo actuar ácidos sobre sales, pero la radiación continuaba. Debía, por ta proceder del interior de los átomos de uranio.

Los científicos se lanzaron rápidamente al est de estas radiaciones. Destacaron entre ellos los es sos Curie, discípulos de Becquerel, que descubrierc polonio y el radio, dos sustancias fuertemente radia vas. Pero fue un inglés, Ernest Rutherford, el que cubrió su naturaleza y la existencia de tres tipos radiaciones: las radiaciones α, las β y las γ. Las ra ciones α no eran capaces de atravesar pequeños e: sores de materia, sino solamente de recorrer cuat cinco centímetros en el aire; hasta una hoja de p: las puede detener. Las radiaciones β pueden ya

 a

 тагит

 2 (

 21 11 1月

 11 111111111111 14

La radiactividad está siendo utilizada con fines pacíficos; en medicina, por ejemplo, se diagnostican enfermedades por medio de gammagrafías que detectan zonas de distinta absorción de un determinado elemento emisor de radiaciones γ. A la derecha, un científico manejando sustancia radiactiva por medio de brazos mecánicos.
netrar varios milímetros de aluminio. Finalmente, las radiaciones γ son capaces de atravesar planchas de plomo de varios centímetros.

Pero lo más interesante de todo ello fue el descubrimiento de las propiedades eléctricas de estas radiaciones. Al pasar entre dos placas de metal unidas a una pila eléctrica o entre los polos de un imán, las tres radiaciones sufren distintos efectos. Las partículas α se desvían en un sentido, las β en el sentido contrario y las γ atraviesan esos campos sin sufrir ningún efecte. De estas experiencias, se llegó a la conclusión de que las partículas α tienen aproximadamente cuatro veces la masa del hidrógeno. Hoy sabemos que no son otra cosa que dos protones y dos neutrones fuertemente unidos. Las partículas β, con una masa 1837 veces menor que la del hidrógeno, son electrones muy rápidos. Y las radiaciones γ son de naturaleza parecida a la de los rayos X o la luz.

De esta forma, gracias a estas radiaciones que nos proporcionan una preciosa información acerca del interior del átomo, se ha visto que las fuerzas eléctricas jugaban un importante papel en la estabilidad atómica. De hecho, hoy se sabe que las fuerzas que unen

núcleos y electrones en el interior del átomo son fuerzas eléctricas. Sobre esta base, Rutherford, lanzando partículas α contra los átomos de delgadas láminas metálicas, logró averiguar la estructura de los átomos y su tamaño, tal como los conocemos hoy.

La radiactividad natural aparece en diversas sustancias, pero puede provocarse artificialmente. Esto ha sido muy utilizado en medicina; por ejemplo, para averiguar en qué parte del cuerpo se utiliza una determinada sustancia o cuál es su recorrido por él. En efecto, supongamos que queremos saber qué parte del cuerpo necesita yodo. En este caso, se irradia yodo, para conseguir que emita radiaciones, y se introduce en el individuo. A través de un detector de radiaciones o por fotografía se puede descubrir el recorrido corporal y el destino del yodo, que es, en el caso de este elemento, especialmente la glándula tiroides. En metalurgia se utilizan métodos parecidos. Las radiaciones procedentes del interior de los átomos pueden ser mortíferas, pero también pueden ayudar a la ciencia moderna.

Estas son algunas de las aplicaciones que los efectos nucleares han aportado. Pero, además de ello, la obtención de la energía eléctrica, la propulsión de barcos y submarinos, el control de plagas son algunas de las realizaciones que funcionan ya perfectamente. A sólo 60 años de las primeras hipótesis modernas sobre los átomos, las aplicaciones presentes y las que se atisban hacen que se comience a pensar en la energía atómica como lo que nunca debió dejar de ser: una poderosa arma de progreso para todos.

ÍNDICE

El universo y la Tierra
El Sol: la estrella de la Tierra Luis Pujol 80
Planetas, satélites y cometas Patrick Moore 136
La Luna
Viajes a la LunaPatrick Moore172
Patrick Moore 242
La materia y la energía
El mundo en desorden Pedro Puigdoménech 8
La presión
La temperatura
Pedro Puigdoménech 104
Pedro Puigdoménech 258
La vida
Diversidad y estabilidadLa vida en los océanosEl plancton marinoLagos, ríos y pantanosMarta Estrada16
Carlos Bas 46
Carlos Bas 128
La polución del aguaÁngel Guerra206
Arturo Compte 266
El hombre
Las glándulasMiguel Ingelmo34Las hormonasMiguel Ingelmo64
La pubertad
Miguel Ingelmo198

ÍNDICE

El universo y la Tierra
Radiotelescopios y fuentes de radiación en el universo Antonio Paluzíe 106
Nuestra atmósfera es así Mariano Medina 244
La materia y la energía
El calor, privilegio de los dioses Pedro Puigdoménech 0
¿Se muere el universo? Pedro Puigdoménech 82
Los cambios de estado faime Casabó 126
Las transformaciones químicas faime Casabó 204
Las técnicas del frío Pedro Puigdoménech 258
La vida
La vida en el suelo Arturo Compte 36
Adaptaciones a la vida en tierra firme Enrique Balcells 134
La conquista del continente Enrique Balcells 212
Conservación de los recursos naturales A. G. Bannikov y V. A. Borisov 294
El hombre
Genética humana Francisco f. Ayala 54
Herencia y educación Ricardo Guerrero 158
Raza Ashley Montagu 264

La materia y la energía

Disoluciones y mezclas
Las máquinas de vapor
Los metales y la metalurgia
Cómo funciona un motor de automóvil
Mecánica del automóvil

Pedro Puigdoménech	8
Pedro Puigdoménech	92
Pedro Puigdoménech	148
Pedro Puigdoménech	196
favier del Arco de Izco	246

La vida

Agresión e imperativo territorial
Parasitismo
Comensalismo y simbiosis
Falsificación de señales en la naturaleza
La agresión en el mundo animal
El comportamiento territorial en los animales
Cortejo y apareamiento
Robert Ardrey 0
Pierre-P. Grassé 32
Pierre-P. Grassé 86
Wolfgang Wickler 140
fuan Pablo Martínez Rica 188
fuan Pablo Martínez Rica 238
Ricardo Guerrero 280

El arte

Cine científico y documental

Miguel Porter24
La industria del cine en el mundo

Miguel Porter132

El cine de vanguardia
Miguel Porter 202

El lenguaje

Los historiadores antiguos
fosé Alsina
48
La oratoria antigua
Manuel Fernández-Galiano
154

El pensamiento

El cristianismo y su expansión	fosé Montserrat Torrens	98
Herejes y padres de la Iglesia	fosé Montserrat Torrens	182
Mahoma	Francisco fosé Fortuny	230

La matemática

El reino de Fermat Foaquin Navarro 40
En deuda con la diosa Namagiri foaquín Navarro 118
Números primos
foaquin Navarro 288

ÍNDICE

El universo y la Tierra

Los frentes en la zona templada Ciclones tropicales Tormentas, tornados y trombas Meteorología de vanguardia

Mariano Medina	50
Mariano Medina	112
Mariano Medina	184
Mariano Medina	252

Mariano Medina
184

Mariano Medina

La materia y la energía

Espacio y tiempo
Las fuerzas
La masa
Los proyectiles
Los movimientos de rotación

Pedro Puigdoménech 8
Pedro Puigdoménech 70
Pedro Puigdoménech 126
Pedro Puigdoménech
Pedro Puigdoménech 234

La vida

El lenguaje de los animales
Comportamiento social de los animales
Las migraciones animales
El cuidado de la prole
Instintos y aprendizaje

Fuan P. Martínez Rica
Esteban de Salas $\quad 121$
Ramón Sáez-Royuela
Michael Boorer 26
Michael Boorer

El hombre

El desarrollo de la inteligencia en el niño
El lenguaje humano
La inteligencia y los tests

Rémy Droz
Miguel Siguán
fosé Luis Pinillos

La historia

Carlomagno, emperador de Occidente	fean-Claude Frachebourg	16
Señores y vasallos	Virgilio Ortega	76
Los Caminos de Santiago	fean-Claude Frachebourg	146
Las cruzadas	fean-Claude Frachebourg	214

La sociedad

La explosión educativa
Los sondeos de opinión
Urbanización
Las subculturas juveniles
La liberación de la mujer
La significación sociológica de la salud

$$
\begin{array}{rr}
\text { Amando de Miguel } & 0 \\
\text { Amando de Miguel } & 64 \\
\text { Kingsley Davis } & 132 \\
\text { fosé Luis L. Aranguren } & 192 \\
\text { Amando de Miguel } & 238 \\
\text { Amando de Miguel } & 278
\end{array}
$$

E1 arte

Apología del circo	Sebastián Gasch	36
Cómo se monta una obra teatral	fosé Monleón	96
Nuevos caminos del espectáculo teatral	Fosé Monleón	170
E1 "music-hall": del café cantante al "strip-tease"	Sebastián Gasch	220

E1 lenguaje

El poema del Cid Alberto Blecua 44
Dante Alighieri Ugo Biagioni 178

El pensamiento

La Escolástica Miguel Cruz Hernández 104
Ciencia y magia en la Edad Media
Pedro Puigdoménech
La Reforma
fean-Claude Frachebourg 272

La matemática

Geometría democ̀rática \quad foaquín Navarro 30
Izquierda y derecha Foaquin Navarro-P. Puigdoménech 90
$\begin{array}{lll}\text { El hombre del muslo de oro } & \text { foaquin Navarro } & 162\end{array}$
Universo y geometría Foaquín Navarro-P. Puigdoménech 246
Prohibido deformar
Foaquin Navarro 294

ÍNDICE

El universo y la Tierra

$\begin{array}{ll}\text { La predicción del tiempo } & \text { Mariano Medina } \\ \text { Fotometeoros y electrometeoros } & \text { Mariano Medina }\end{array}$

La materia y la energía

La energía
Los cohetes
La gravitación
El movimiento de los planetas

Pedro Puigdoménech
Pedro Puigdoménech
Pedro Puigdoménech
Carlos Simó

La vida

Conducta animal y conducta humana
Michael Boorer
Ritmos y ciclos
La luz y los seres vivos
El fotoperiodismo en las plantas
La fotosíntesis
Ricardo Guerrero
María Concepción Rigau
Pedro Camprubí
María Concepción Rigau

El hombre

Las drogas alucinógenas	f. Laporte
El tabaco y sus problemas	Luis Trias de Bes
Las bebidas alcohólicas	Francisco Freixa
La vida emotiva	Francisco Escudero
Las neurosis	A. Medina León

[^0]: La energía atómica ha encontrado su más espectacular utilización en las explosiones nucleares.
 Han sido éstas las que han llamado la atención general sobre las modernas teorías de la física, basadas en la estructura atómica de la materia.

