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The eight-cysteine motif, a versatile structure in plant proteins
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Abstract

A number of protein sequences deduced from the molecular analysis of plant cDNA or genomic libraries can be grouped in relation to a
defined number of cysteine residues located in distinct positions of their sequences. This is the case for a group of around 500 polypeptides
from different species that contain a small domain (less than 100 amino acids residues) displaying a pattern of eight-cysteines in a specific
order. The plant sequences containing this motif belong to proteins having different functions, ranging from storage, protection, enzyme
inhibition and lipid transfer, to cell wall structure. The eight-cysteine motif (8CM) appears to be a structural scaffold of conserved helical
regions connected by variable loops, as observed by three-dimensional structure analysis. It is proposed that the cysteine residues would form
a network of disulfide bridges necessary, for the maintenance of the tertiary structure of the molecule together with the central helical core,
while the variable loops would provide the sequences required for the specific functions of the proteins.
© 2004 Elsevier SAS. All rights reserved.
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1. Introduction

An increasing number of proteins have been characterized
during the last years by protein purification, cDNA or ge-
nomic cloning and genomic sequencing from different plant
species that show similarity in a region containing eight-
cysteine residues present in a specific pattern. This protein
domain is usually formed by less than 100 amino acids.
Sometimes this eight-cysteine motif (8CM) domain is pre-
ceded or interrupted by a proline or proline/glutamine repeat
domain. The eight-cysteine residues are located following a
conserved pattern, where the third and fourth cysteines are
consecutive in the polypeptide chain and the fifth and sixth
cysteines are separated by only one residue.

The plant sequences containing this motif belong to pro-
teins that share a signal peptide and have different functions.
They are largely distributed in the plant kingdom [34,61–62].
A number of these proteins, known as 2S-albumins, have
been found in intracellular storage protein bodies of embryo
organs. They appear to be very stable glutamine-rich pro-
teins, having a storage function of nitrogen and sulfur, but
they are also protease inhibitors and they display antifungal

activity [2]. Other proteins are present in the endosperm
having specific inhibitory functions against glycolytic or
proteolytic enzymes, such as amylases, trypsin and some
human plasma serine proteases [14,23,57,59]. Other 8CM
sequences belong to a subfamily of cell wall proline-rich
structural proteins named hybrid proline-rich proteins
(HyPRP) [37], because they mostly contain a proline-rich
domain in the N-terminal half after the signal peptide and a
hydrophobic 8CM domain in the C-terminal half. These
genes are usually expressed in a tissue specific manner or
induced by specific stresses or hormones but their function
has not been clearly determined [37]. The same type of 8CM
domain but with a hydrophilic character can be found in other
polypeptides such as in lipid transfer proteins (LTP) [39].
LTPs are tryptophan-depleted proteins that appear to be in-
volved in plant biotic and abiotic stresses [22] and they have
been shown to be able to transfer lipids from one membrane
to another “in vitro” [39]. They have been located in the cell
wall, and it has been proposed that they could be involved in
different functions such as: furnishing cutin monomers to the
cuticle [66,73], permeabilization of membranes during the
antifungal response acting either directly or synergistically
with other proteins such as cysteine-rich thionins
[7,12,39,71] in a similar manner as 2S-albumins and puroin-
dolines [13,69], by binding to specific membrane lipopro-
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teins or to elicitin membrane receptor sites [5]. Some mem-
bers of these 8CM protein families are known allergens by
food ingestion [49] or involved in asthma processes by inha-
lation [29,53,60].

2. Alignment of selected protein sequences

A selection of the proteins that belong to the 8CM family
aligned to show the pattern of the cysteine residues is shown
in Fig. 1. At the present stage of sequences available in the
Data Banks, we have found by FASTA, BLAST and INTER-
PRO (IPR003612); PFAM (PF00234) analysis a minimum of
500 different proteins having this pattern in the databases
(Table 1). Sixty-nine sequences (from 29 different species)
belong to the HyPRPs [37,46] and around 300 sequences
among them (from 71 different species) belong to the LTPs
[77].A collection of 47 proteins (from eight different cereals)
belongs to the cereal inhibitor family [67] and at least 81 se-
quences (from 30 different species) have been identified as
part of the 2S-albumin seed storage family of proteins [2,61].
All the 8CM protein families are distributed in both dicot and

monocot plant species, although 2S-albumins in monocots
have been only reported in rice [64] and maize [79]. One
exception is that produced by 8CM protease inhibitors,
which is only present in monocotyledonous plants. In dicoty-
ledonous species, these inhibitor functions are associated
with other families of proteins having different cysteine pat-
terns, as described below.

The sequencing of the genome of Arabidopsis thaliana
has allowed us to identify the 8CM containing proteins in a
simple plant. Twenty-three different Arabidopsis HyPRPs
have been identified because they have an 8CM hydrophobic
domain placed at the C-terminal end of the protein after a
proline-rich domain of variable length preceded by a signal
peptide (Table 1). They can be distributed in three groups in
relation to the length of their proline-rich domain (long,
short, and very short or null). Fourteen of these sequences are
present in chromosome IV, and four, two, one and two, in
chromosomes I–III and V, respectively. One of these proteins
has previously been described as pEARLI1 an aluminum
responsive gene [56]. Seven consecutive copies of pEARLI1
can be found in chromosome IV and two in chromosome I.

1 2 34 5 6 

LeTPRP    257 AQP-TCPI-DALK---LGACVDVLGGLIH-IGIGG---SAK---------QTCCPLLGGLV-----DLDAA-ICLCTTIRLK-
MsPRP2  293 AQQ-TCSI-DALK---LGACVDVLGGLIH-IGIGG---SAK---------QTCCPLLQGLV-----DLDAA-ICLCTTIRLK-
CsrHYPRP  239 KQP-TCPI-DALK---LNACVDLLGGLIH-IGIGR---SAK---------DTCCPVLGGLA-----GLDAG-ICLCTTIKAK-
ZmHYPRP  211 AVR-TCPI-DTLK---LNACVDVLSGLIH-LVIGQ---EAR---------SKCCPLVQGVA-----DLDAA-LCLCTTIRAR-
NT16     84 GQG-RCPR-DALK---LGVCANLLGGLVG-VIVGS---PPT---------LPCCSLIAGLA-----DLEAA-VCLCTAIRAN-
DC2-15   50 SAG-KCPR-DALK---LGVCADVLN-LVHNVVIGS---PPT---------LPCCSLLEGLV-----NLEAA-VCLCTAIKAN-
MsACIC   80 TSQ-KCPT-DTLK---LGVCADVLG-LVN-VIVGS---PAS---------SKCCTLIQGLA-----DLDAA-VCLCTAIKAN-
ZmRP3  44 SHG-RCPI-DALK---LKVCAKVLG-LVK---VGL---PQY---------EQCCPLLEGLV-----DLDAA-LCLCTAIKAN-
AtAIR1  24 TTG-TCPK-NSIE---IGTCVTVLN-LVD-LTLGN---PPV---------KPCCSLIQGLA-----DLEAA-ACLCTALKAS-
GmHSP      43 TRP-SCPD--------LSICLNILG---G--SLG-----TV---------DDCCALIGGLG-----DIEAI-VCLCIQLRA--
BnIb     1 QPQ-KCQR-EFQQEQHLRACQQWI—-RQQLAGSPFQSGPQEG----PWLREQCCNELYQE--------DQ—-VCVCPTLKQA-
CmMABIN    36 QLW-RCQR-QFLQHQRLRACQRFIHRRAQFGGQP--x16--PRR-----PALR-QCCNQLRQV--------DR--PCVCPVLRQA-
HvTI      24 SFGDSCAPGDALPHNPLRACRTYV--VSQICHQG----PRLLT---SDMKRRCCDELSAI--------PA--YCRCEALRII-
EcRATI     1 SVGTSCIPGMAIPHNPLDSCRWYV--STRTCGVG----PRLAT---QEMKARCCRQLEAI--------PA--YCRCEAVRIL-
TaAI0.19    1 SGPWMCYPGQAFQVPALPACRPLL--RLQ-CNSGQ--VPEA-------VLRDCCQQLAHI--------SE--WCRCGALYSM-
TaPURO   35 GAQ-QCPV-ET-K---LNSCRNYL--LDR-CSTMKD-FPVTX7KGGCQELLGECCSRLGQM--------PP--QCRCNIIQGS-
ZmLTP    27 AAI-SCGQ-VASA---IAPCISYA--RGQ--GSG----PSA----------GCCSGVRSLNNAARTTADRRAACNCLKNAAAG

7 8 

LeTPRP LLN---INII-------------LPIALQVLIDD--------CGKYPPK-----DF-KCPST------ 346    X61395 
MsPRP2 LLN---INLV-------------IPLALQVLID---------CGKTPPE-----GF-KCPAY------ 381    L37017 
CsrHYPRP LLN---INII-------------LPIALQVLIDD--------CGMIPPA-----GF-QCPVDG----- 329    L20755 
ZmHYPRP LLN---INIY-------------LPIALNLLIT---------CGKHAPS-----GF-QCPPLYD---- 300    X60432 
NT16 VLG---INLN-------------VPLSLSLVLNN--------CGRNPPT-----GF-TC--------- 17     D86629 
DC2-15 ILG---KNLN-------------LPIALSLVLNN--------CGKQVPN-----GF-ECT-------- 137    X15436 
MsACIC ILG---INLN-------------VPITLSLLLSA--------CEKSIPN-----GF-QCS-------- 166    L22305 
ZmRP3 VLG---IHLN-------------VPLSLNFILNN--------CGRICPE-----DF-TCPN------- 129    Z12103 
AtAIR1 ILGI—-VNIN-------------LPINLSVLLNV--------CSRNAPK-----SF-QCA-------- 111  AF055847 
GmHSP         -LG--ILNLN---------------RNLQLILNS--------CGRSYPS-----NA-TCPRT------ 119  AF100159 
BnIb          AKSVR-VQGQ--HG----------PFQSTRIYQIAKN-LPNVCNMKQI------G--TCPFIA-I--- 106  (P24565) 
CmMABIN       AQQV—-LQRQIIQG----------PQQLRRLFDAARN-LPNICNIPNI------GA--CPFRA-W--- 155    D83997 
HvTI MQGVVTWQGA-FEGAYFKDSPN-CPRERQTSYAANLV-TPQECNLGTIH-----GSAYCPELQPGY-- 144    X65875 
EcRATI MDGVVTSSGQ-HEGRLLQDLPG-CPRQVQRAFAPKLV-TEVECNLATIH-----GGPFCLSLL-GAGE 122    P01087 
TaAI0.19 LDSMYKEHGAQ-EGQAGTGAFPRCRRE---VVKLTAASITAVCRLPIVVDASGDGAYVCKDVAA---- 120  AB003682 
TaPURO IQG—-DLGGIFGFQ---------RDRASKVIQEAKN--LPPRCNQGPP----------CNIPG----- 142  X69913 
ZmLTP VSG---LNAG----------------NAASIPSK--------CGVSIPYTIS--TSTDCSRVN----- 120  J04176

Fig. 1. Clustal alignments of 8CM proteins. Clustal analysis was obtained by alignment of 8CM proteins from http://searchlauncher.bcm.tmc.edu and
http://www.ch.embnet.org. Protein names and accession numbers are indicated. Numbers at the top of alignments indicate the position of each cysteine in the
motif. Residues are colored according to similarity group. Cysteines are red colored. Proteins with know tertiary structure are underlined. (X16) Gap of
16 non-related aminoacids. (/) End and beginning of light and heavy chain, respectively.
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Table 1
CM8 containing proteins obtained by BLAST queries in the EMBL Genebank http://www2.ebi.ac.uk and Arabidopsis genome MIPS http://mips.gsf.de from
zmHyPRP for HyPRPs [38], AtLTP1 for LTPs [72], AtALB1 for 2S-albumins [32] and RATI for cereal inhibitors [67]

Group Organism Number
Proteins
with an
hydrophobic
8CM
domain
(HyPRP,Hy
GRP, others)

Arabidopsis
At1g12090; At1g12100; At1g62500; At1g62510; At2g10940; At2g45180; At3g22120; At4g12470; At4g12480; At4g12490;
At4g12500; At4g12510; At4g12520; At4g12530; At4g12550; At4g15160; At4g22460; At4g22470; At4g22490; At4g22520;
At4g22610; At5g46890; At5g46900

23

Other species
Asparagus offıcinalis X82413; Brassica napus X94976; X71618; Catharanthus roseus Z26880; X85206; Cicer arietinum AJ278505;
Citrus junos AY100448; Cucumis sativus AF104392; Cuscuta reflexa L20755; Daucus carota X15436; AB000505; Fragaria x
ananassa AF026382; Glycine max AF100159; X69640; Lithospermum erythrorhizon D45901; Lycopersicon esculentum X61395;
X95262; Malus domestica U80271; Medicago sativa L22305; L37017; Medicago truncatula Y15372; Nicotiana glauca x Nicotiana
langsdorffıi D26454; Nicotiana tabacum D86629; AF043554; L13439; L13440; L13441; L13442; L13443; Oryza sativa L27208;
L27209; L27210; Phaseolus vulgaris U34333; Pinus taeda AF101789; Pisum sativum X67427; Populus nigra D83227; Solanum
brevidens U30304; Solanum melongena AB032755; Triticum aestivum U73214; Vitis riparia AF220197; Vitis vinifera AY046416;
Zea mays X60432; Z12103; AF001634; AB018587; AB018588

46

LTPs Arabidopsis
At2g15050; At2g18370; At2g38530; At2g38540; At3g08770; At3g51590; At3g51600; At4g33355; At5g01870; At5g59310;
At5g59320

11

Other species
Aerides japonica AF198168; Amaranthus caudatus P80450; Avicennia marina AF331710; Atriplex nummularia AB112477; Beta
vulgaris X92748; Brassica napus U22105; U22174; U22175; X60318; AJ245873; Brassica oleracea L33904; L33905; L33906;
L33907; L29767; AF093751; Brassica rapa L31938; Bromus inermis AY057932; Capsicum annuum AF118131; AF208833;
AF208834; Cicer arietinum AJ002958; Citrus sinensis AF369931; Corylus avellana AF329829; Daucus carota M64746; Davidia
involucrata AY059472; Eleusine coracana P23802; Euphorbia lagascae AF363505; Fragaria x ananassa AJ315844; Gerbera
hybrida Z31588; Glycine max AI748411; AW152885; Gossypium barbadense AF531366; Gossypium hirsutum S78173; U64874;
U15153; AF044204; AF195863; AF195864; AF195865; AF228333; Helianthus annuus X92648; Hevea brasiliensis AY057860;
Hordeum vulgare X59253; X60292; X68654; X68655; X68656; Z66528; Z66529; Z37114; Z37115; U18127; U63993; X96979;
Lilium longiflorum AF171094; Lycopersicon esculentum X56040; U81996; Lycopersicon pennellii U66466; U66465; Malus x
domestica AF221502; Nicotiana glauca AF151214; Nicotiana tabacum AF519812; D13952; X62395; Oryza sativa D15364;
D15678; D22795; D16036; U77295; Z23271; U29176; X83433; X83434; X83435; U31766; AF017358; AF017359; AF017360;
AF017361; AF114829; Y08691; AY335485; AF051369; Pachyphytum sp L14770; Phaseolus aureus P83434; Phaseolus vulgaris
U72765; Prunus armeniaca P81651; Prunus avium AF221501; Prunus domestica P82534; Prunus dulcis (amygdalus) X96714;
X96716; X96715; Prunus persica AJ277163; P81402; AY093700; Pyrus communis AF221503; Retama raetam AF439280; Ricinus
communis P10973; P10974; Setaria italica AF439446; Solanum tuberosum AF525362; AF525363; Sorghum bicolor X71667;
X71668; X71669; Spinacia oleracea M58635; Triticum aestivum X05168; AF302788; AF334185; Q9S876; Q9S877; AF551849;
AY226580; AF302788; Triticum turgidum (durum) X63669; Vitis vinifera AF467945; AF467946; Vitis berlandieri x Vitis vinifera
AF465408; Zea mays M57249; S45635; U66105; J04176

123

LTPs-like
GPI-
anchored

Arabidopsis
At1g18280; At1g73890; At2g13830; At2g27130; At2g44290; At2g44300; At2g48130; At3g22600; At3g22611; At3g43720;
At3g58550; At4g08670; At4g12360; At4g22630; At4g22640; At5g09370; At5g13900; At5g64080

18

LTPs-Iike Arabidopsis
At1g27950; At1g32280; At1g36150; At1g43665; At1g43668; At1g48750; At1g52415; At1g55260; At1g62790; At1g64240;
At1g66850; At1g70240; At1g73550; At1g73560; At1g73780; At2g13820; At2g15325; At2g37870; At2g48140; At3g07450;
At3g12545; At3g18280; At3g22570; At3g22580; At3g53980; At3g57310; At4g08530; At4g14815; At4g22610; At4g22650;
At4g28395; At4g30880; At4g33550; At5g05960; At5g38160; At5g38170; At5g38180; At5g38195; At5g48485; At5g48490;
At5g52160; At5g55410; At5g55450; At5g55460; At5g56480; At5g62080. Anther specific: At5g07230

47

Other species
Allium cepa S79815; Ambrosia artemisiifolia U89793; Ananas comosus AY098530; Brassica rapa AB010433; Hordeum vulgare
AF039024; X15257; X69793; U88090; X56547; Medicago truncatula Y15371; Nicotiana tabacum AF233297; U14167; U14168;
Parietaria judaica X85012; X95865; X95866; X95867; Pinus radiata AF110332; U90342; Pinus taeda U10432; Phaseolus vulgaris
U34334; Oryza sativa A23332; P83210; U16721; Ricinus communis M86353; M86354; D11077; Senecio odorus L33791; Silene
latifolia Y08779; Striga hermonthica Y16247; Triticum aestivum P82900; P82901; P39085; Triticum turgidum AJ297768; Vigna
unguiculata X79604; Zea mays P83506; Zinnia elegans U19266; Anther specific: Brassica campestris AY237725; Lycopersicon
esculentum Z14088; Lilium henryii X80718; X80719; Lilium longiflorum D21807; D21808; D21809; Oryza sativa D50575; Pinus
radiata U90343; U90350; Silene latifolia Y08780; Zea mays AJ224355; AJ006702; Puroindolines a: Avena sativa AJ249930;
Hordeum vulgare AJ249929; Secale cereale AJ249932; Triticum aestivum X69913; X69914; Triticum monococcum AJ249933;
Triticum tauschii AJ249935; Puroindolines b: Avena sativa AJ249931; Hordeum vulgare AJ249928; Triticum aestivum X69912;
Triticum tauschii AJ249936; Triticum monococcum AJ249934; Grain softness: Aegilops tauschii AF177219; AY252046; AY252062;
AY252063; AY252046; Triticum aestivum AF177218; AF177219; AY255771; S72696; X80379; X80381; Triticum monococcum
AJ242717

74

(continued on next page)
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Identities range from 90% for three of the seven copies in
chromosome IV, to 75% for the other three copies in chromo-
some IV and the two in chromosome I and 60–70% for their
two relatives in chromosome V, for the one in chromosome II
and for AIR1 one of the Arabidopsis HyPRPs with null
proline-rich domain whose expression is related to lateral
root formation induction by auxin [46]. Between the se-
quences sharing a long proline-rich repetitive domain are the
genes atcwlp (chr. III) and atcwlp-h (chr. IV) [30] cloned by
a yeast based signal sequence trap selection method, from an
Arabidopsis cDNA library, to find secreted and plasma mem-
brane proteins.

Arabidopsis LTP1 [72] sequence homology studies indi-
cate that the first 11 sequences to come out from the search
correspond to the classical LTPs [1,15]. These sequences
present the consensus sequence described for maize LTP [63]
necessary to establish an internal hydrophobic cavity to al-
low lipid transfer between membranes. This consensus se-
quence is progressively lost in the aligment as sequences are
more distant from LTP1. In addition to the classical LTPs we
have identified 65 “LTP-like” proteins, 29 of them sharing
C-terminal ends of varying length, and 18 of them sharing
putative GPI-anchors [8,74] (Table 1).

A Fasta and Blast analysis has also been done with
AtALB1 protein [32] to search for Arabidopsis 2S-albumin

seed storage proteins and it has only allowed the identifica-
tion of five sequences. Four of them (ALB1-ALB4) are
present in chromosome IV [32] and the fifth isoform is
localized in chromosome V [76] (Table 1).

The phylogenetic analysis of all these proteins shows
particularly interesting details. When all HyPRP sequences
from either Arabidopsis or other plants are plotted in an
unrooted tree it is possible to observe different groups that
are related either to the length of the proline-rich domain
attached to the 8CM, to its specific expression pattern in the
root (ZmAF001634, ZmZ12103, OsL27210, OsL27209) or
to the presence of glycine instead of proline in the repetitive
protein domain (LeX95262, NtD86629, NtAF043354,
SmAB032755) (Fig. 2). The opposite situation in the tree, of
proteins containing long and short proline-rich repeats, sug-
gests that they are probably the result of repeat amplification
or insertion into hydrophobic 8CM proteins present in the
central region of the tree, followed by divergent evolution.

The phylogenetic tree analysis of LTPs (not shown) shows
three main groups of proteins. Classical LTPs spread in two
branches, one for dicotyledonous and one for monocotyle-
donous plants and LTPs-like proteins spread as a third branch
where LTPs sharing a putative GPI anchor at their C-terminal
end are localized. LTP-like proteins have a low level of
similarity in the amino acids consensus for the hydrophobic

Table 1
(continued)

Group Organism Number
2S-albumins Arabidopsis

At4g27140; At4g27150; At4g27160; At4g27170; At5g54740 5
Other species
Anacardium occidentale AY081853; Arachis hypogaea AF091737; AF092846; AF366561; AY007229; AY117434; AY158467;
Bertholletia excelsa AB044391; X54490; X54491; Brassica carinata X74813; Brassica juncea P80207; X65972; Brassica napus
AF448054; P17333; P09893; K01544; J02782; P24565; X14492; X17542; X58142; K01545; J02586; U04944; Brassica nigra
X65971; Brassica oleracea X65038; X65970; Brassica rapa (campestris) M64631; M64632; X65969; Capparis masaikai P80351;
P30233; P80352; P80353; Carya Illinoinensis AY192569; Cucurbita cv. D16560; Glycine max AF005030; U71194; Gossypium
hirsutum M86213; M83301; Helianthus annuus AJ275962; X06410; X76101; Juglans nigra AY102930; Juglans regia U66866;
Linum usitatissimum AJ414732; AJ414733; Lupinus angustifolius X53523; Momordica charantia AJ488931; Oryza sativa X63990;
D50643; L12252; Picea glauca X63193; AF074937; AF074938; AF074939; L47745; U92077; Pinus strobus X62433; X62434;
X62435; X62436; Pseudotsuga menziesii AF029970; AF029972; AF029973; Raphanus sativus M63841; M63842; M63843; Ricinus
communis X54158; Sesamum indicum AF091841; AF240005; Sinapis alba S54101; X91798; X91799; X91800; X91801; X91802;
Vitis vinifera AY267254; AY267255; Zea mays AF371278

81

Amylase
inhibitors

Arabidopsis
None
Other species
Monomeric: Hordeum vulgare X63517; Sorghum bicolor (vulgare) P81367; P81368; Triticum aestivum P01083 35
Dimeric: Hordeum vulgare AJ009801; Triticum aestivum P01084; P01085; Triticum turgidum (durum) X55454; X16733
Tetrameric: Hordeum vulgare X69937; X69938; X69939; X69911; Triticum aestivum X59791; X17573; X17574; X17575
Non-determined: Hordeum vulgare X13433; Triticum turgidum (durum) X16733; X55454; Oryza sativa X66257; D11433; D11432;
D11430; D11434; D42139; D42140; D42141; D43657; D43658; D43659; X62091; O49178; AP005197; Q8H4MS; Q8H4M4

Trypsin inhi-
bitors

Arabidopsis
None
Other species
Hordeum spontaneum AJ222974; AJ222975; Hordeum vulgare AJ222977; AJ223458; AJ222978; X98593; X98594; Y12069 8

Trypsin
inhibitors
with
different
inhibitory
functions

Arabidopsis

None

Other species

Zea mays X54064 (trypsin, insect a-amylase, Hageman factor inhibitor); Eleusine coracana P01087 (mammalian, insect a-amylases
and trypsin inhibitor); Hordeum vulgare X65875 (trypsin, Hageman Factor, kallikrein); AJ251931 (trypsin, insect a-amylase)

4
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internal channel, and may have evolved from a different gene
that result from a very early division of the ancestral LTP
gene in plants [77]. Representative of this group are a potent
antimicrobial protein from onion seeds (Ace-AMP1) [12]
that has been shown to be unable to transfer lipids and that
will be described below and anther specific proteins [41,54].
They also include puroindolines, proteins first described in
wheat as grain softness proteins [9,24,36] and that are LTP-
like proteins with 10 cysteines and a tryptophan-rich domain.
A number of proteins similar to puroindolines have been
identified in other plant species [25].

3. Three-dimensional structure of 8CM proteins

Four members representative of the 8CM family of pro-
teins, soybean hydrophobic seed protein (GmHSP) [3],
wheat a-amylase dimeric inhibitor (TaAI0.19) [47], bifunc-
tional corn Hageman factor inhibitor (CHFI) [4] and bifunc-
tional a-amylase/trypsin inhibitor from ragi seeds (EcRATI)
[31,67] have been crystallized and their tertiary structure is
solved. In the four cases the cysteine bridges are those
formed between residues 1–5, 2–3, 4–7 and 6–8 (Fig. 3). The
same pattern of disulfide bridges has been found by nuclear
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Fig. 2. Phylogenetic tree of plant HyPRPs. Proteins were identified by BLAST queries (EMBL Genebank http://www2.ebi.ac.uk and Arabidopsis genome MIPS
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magnetic resonance (NMR) for three albumin genes namely:
napin (BnIB) a 2S-albumin from Brassica napus purified
from Brassica seeds [58] and from its recombinant protein
[52] expressed in Pichia pastoris [50]; an allergen 2S-
albumin recombinant protein from Ricinus communis
(RicC3) [51] expressed using minimal medium cultures of
E. coli [20] and for SFA-8 albumin (HaSF8) purified from
sunflower seeds [52] and from its cyanogen bromide cleav-
age [17].

For LTPs the tertiary structure was solved in solution by
NMR in different species: maize [28], wheat [27], barley [33]
and rice [55], and also by X-ray crystallography in maize
[63] and rice [43]. Results obtained by NMR or X-ray crys-
tallographic structure studies of LTPs are in agreement. LTP
proteins show a difference in the disulfide bridge pattern with
respect to the other 8CM proteins involving cysteine residues
5 and 6 that are separated by a single residue (Fig. 3).
Nevertheless, all 8CM proteins share a similar tertiary struc-
ture and define a new fold class formed by four helices
connected by loops of different length (Fig. 3).

The three-dimensional structures of the five most repre-
sentatives 8CM proteins have been superimposed in Fig. 4A.
From these comparisons it is possible to conclude that the
position of the C2–C3 and C4–C7 disulfide bonds in the
scaffold is conserved for the five proteins. C1–C5 and C6–C8
are similarly positioned in EcRati, TaAI0.19 and BnIb, as a
result of the presence of C5 and C6 at the beginning of helix
3. On the other hand, GmHSP C1–C5 and ZmLTP C1–C6

1 2 34 5 6 7 8 

A 310 Helix   L1 Helix 2 L2 Helix 3 L3 Helix 4 Strand

                   8             14                         28 29 43 45 67              77 

 -TRPSC--------PDLSICLNILGGSLG--------------TVDDCCALIGG------LGDIEAIVCLCIQLR-------------------------ALGILNLNRNLQLILNSCGRSY------PSNATCPRT

B H1a H1b L1 Helix 2 L2 Helix 3  L3 Helix 4 310 Helix

4   14       29 30   50 52 75 89 

 -AAISC----GQVASAIAPCISYARGQGSGPS-------------AGCCSGVRSLNNAARTTADRRAACNCLKNAAA------------------------GVSGLNAGNAASIPSKCGVSI-PYTISTSTD-CSRVN

C Helix 1 L1             Helix 2 L2 Helix 3   1 2 L3 Helix 4    

   6 20 29 44 45 55 57 85 103 114
  

I  SVGTSCIPGMAIPHNPLDSCRWYVSTRTCGVGPRLA----TQEMKARCCRQLEAI----------PAYCRCEAVRILMDGVVTSSGQHEGRLLQDLPG-CPRQVQRAFAPKLVTEVEC-NLATIHG---GPFCLSLLGAGE

D    Helix 1 L1   Helix 2 L2 Helix 3 L3  Helix4a Helix4b 1 L4  

                6 20 28 41 42   52 54 83  99  115
   

-SGPWMCYPGQAFQVPALPACRPLLRLQ-C------NSGQVPEAVLRDCCQQLA----------HISEWCRCGALYSMLDSMYKEHGAQEGQAGTGAFPRCR-- REVVKLTAASITAVCRLPIVVDASGDGAYVCKDVAAYPDA

E   Helix I Helix I’ L1 Helix 2 L2 Helix 3 L3 Helix 4 

 5  18 14 15 25 27 62 70 

--QPQKCQREFQQEQHLRA-CQQWIRQQLAGSPF QSGPQEGPWLREQCCNELYQE----------DQVCVCPTLKQAAKSV------------RVQGQHGPFQSTRIYQIAKNLPNVCNMKQIGT--------CPFIAI

2 Helix5 

Fig. 3. Schematic representation of the disulfide bond patterns in GmHSP (A), ZmLTP (B); EcRATI (C); HvAI0.19 (D) and BnIb (E). Above the sequences are
the regions of the a-helices (green boxes), b-strands (horizontal arrows), and 310 helix (yellow boxes). L, loop. Binding sites for trypsin and a-amylase are
underlined in red and blue, respectively. Aminoacids involved in ZmLTP and ZmHSP hydrophobic cavity are underlined in green (thick and thin lines for
ZmHSP correspond to the larger and smaller cleft).

Fig. 4. Superimposition of the tertiary structure of different 8CM proteins.
A, Stereoview of the superimposition of the average NMR structure of BnIb
(brown) and the Ca traces of the X-ray structures of Hv AI0.19 (yellow),
EcRATI (red), ZmLTP (green) and GmHSP (blue). Red sticks symbolize
disulfide bonds. B, Same stereoview as in (A) but showing only the a-helices
helix 1 (a), helix 2 (b), helix 3 (c), helix 4 (d).
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shows topological similarity, distinct from the previous three
cases mentioned, but shows different location for their other
dicysteine bridge (GmHSP C6–C8 and ZmLTP C5–C8).

The common topology of these structures is inferred from
the comparison of their four a-helical structures segments
(Fig. 4). Structural similarity between the four superimposed
helices of the five studied proteins is shown in Fig. 4A, B to
highlight their conservation in the relative distribution
(Fig. 4B). Maximum divergence can be observed in helix
4 and in the loops between the helices of the different pro-
teins analyzed. Particularly, interesting is loop 1, connecting
helix 1 and helix 2, where the trypsin inhibitor site with its
consensus sequence GPRL (one letter amino acid code) is
observed in RAGI (Figs. 1 and 4A), as well as in CHFI [4]
(Fig. 1). Divergences can also be observed for maize LTP
internal hydrophobic cavity and in its C-terminal end that
appears to be adapted to locate lipids. Other differences are
disruption of helices 1 and 4 in zmLTP and of helix 1 in BnIb
and the presence of b-sheets structures after helix 4 in Gm-
HSP and TaAI0.19.

Superimposed stereoviews of 8CM proteins have shown
conserved distribution of helices, where cysteine residues
form a network of disulfide bridges necessary for the main-
tenance of the tertiary structure of the molecule. Major dif-
ferences are located in the loops and N- and C-terminal tails,
where the main functional divergences of 8CM structural
scaffold are found, as will be described below.

4. Comparison of the three-dimensional structure
differences of 8CM proteins with HSP

To better visualize differences between tertiary structures
of 8CM proteins, the structures of BnIb [58], TaAI0.19 [47],
EcRATI [31] and ZmLTP [63] have been individually super-
posed to GmHSP [3] (Fig. 5). GmHSP has been chosen as a
reference for the comparison for its consensus structure of
four helices connected by short loops. GmHSP is a highly
hydrophobic HyPRP [48] allergenic protein [29], mainly
present in the seed pericarp, where it is supposed to have a
structural or defense function [26]. Fig. 5A shows GmHSP
[3] superposition with BnIb [58], a 2S-albumin. BnIb tertiary
structure presents two polypeptide chains linked by two
disulfide bridges as the result of the classical cleavage of
2S-albumins loop 1 by maturation proteolytic enzymes dur-
ing translation [58], with one exception, the above cited sun8
[17]. Differences with GmHSP are observed in the length of
loop 3, in the C-terminal tail orientation and distribution of
charged amino acids. Conversely to HSP, BnIb presents
23 mainly positively, surface located, charged amino acids.
These charges might be responsible for electrostatic interac-
tions with the membrane during defense processes.

Fig. 5B compares GmHSP [3] with dimeric TaAI0.19, an
a-amylase inhibitor from wheat kernel [47], that inhibits
a-amylases from various sources, such as human saliva,
chick pancreas, yellow mealworm and Bacillus subtilis by a
not well understood mechanism. TaAI0.19 structure shows a

breakage in loop 3 just before the additional disulfide bond
placed before helix 4. Although the four a-helices of GmHSP
and TaAI 0.19 can be superimposed, the conformation of the
segments connecting the a-helices (specially loop 3) differ
considerably. In addition, the C-terminal segment differs by
two antiparallel b-strands and an additional short helix 5.

Fig. 5. Superpositions of GmHSP (blue) with (A) BnIb (brown), (B)
HvAI0.19 (purple), (C) EcRATI (red), (D) ZmLTP (green). Disulfide bonds
as yellow stick.
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GmHSP [3] and EcRati [31], a bifunctional inhibitor that
is the prototype of the cereal inhibitor superfamily that fur-
ther includes trypsin and a-amylases inhibitors from differ-
ent sources, are compared in Fig. 5C. Differences are ob-
served in the N-terminal tail and loop 1 of EcRati, involved in
amylase and trypsin inhibitory functions, respectively, and in
loop 3 with an antiparallel b-sheet.

GmHSP [3] and ZmLTP [63] are compared in Fig. 5D.
Both proteins show a similar scaffold structure, although the
C5 and C6 bridges are inverted in ZmLTP with respect to
GmHSP. Differences in the polar cluster of the entrance of
the internal hydrophobic cavity and in its size as well as in the
C-terminal tail orientation are also observed. These differ-
ences may explain the inability of HSP to transfer lipids,
although a hydrophobic cleft is observed inside the folded
protein, while differences in the surface charge of both pro-
teins explain the insolubility of HSP that has a hydrophobic
surface charge.

Functionality of the internal hydrophobic LTP cavity has
been probed by crystallographic structure studies of maize
LTP complexed with lipids such as palmitate, as well as
solution structure studies. Results show that only one acyl
chain of the hydrophobic tails of fatty acids is inserted in the
protein internal cavity. Different conformational changes are
observed after lipid binding to the different LTPs as a conse-
quence of their different cavity size and accessibility
[40,44,63,65]. A limit example of variability in the internal
cavity is given by Ace-AMP1, a potent antimicrobial LTP-
like protein described in onion seeds [69] and that has two
tryptophan residues in its primary sequence. Solution studies
of Ace-AMP1 show that the presence of aromatic amino
acids in the cavity of the folded protein may avoid lipid
binding to the protein. However, its interaction with phos-
pholipid membranes appears to be more efficient than the one
described for wheat LTP, due to the presence of 19 arginine
residues spread over all the sequence, 12 of them being
oriented toward the C-terminal region. This structure may be
important for the interaction with acidic lipid layers. Never-
theless, this interaction appears not to be so efficient as the
one described for puroindolines [13], involved in membrane
interactions as albumins and thionins [69].

5. Relation of 8CM proteins with other families
of plant proteins

The 8CM domain has shown to be able to detect in data-
bases different groups of proteins with different functions.
These functions are also shared by other proteins with differ-
ent tertiary structures. A good example is provided by the
proteins having a trypsin inhibitor function that is done by
plant proteins that have very different conformations but
have in common the way they interact with proteinases
through an exposed binding loop [6]. These trypsin inhibitor
families are usually small proteins cross-connected by disul-
fide bridges associated to b-strand conformations instead of
the four a-helices described for the 8CM family of proteins.

One example is the Bowman–Birk family of double-headed
proteinase inhibitors with 14 cysteine residues embedded in a
consensus sequence and associated to a six b-strand protein
conformation, which is stabilized by seven disulfide bridges
[78] (Fig. 6). Another example is provided by the soybean
Kunitz trypsin inhibitor (GmKTI) with two disulfide cys-
teines bridges (1–2, 3–4) and with loops wrapping around the
hydrophobic side chains of b-pleated sheet structure [68].

Sequence homology of GmKTI is observed with other
inhibitors, such as BASI (barley bifunctional a-amylase-
subtilisin inhibitor) [75] with 12 antiparallel b-strands joined
by loops and the same cysteine bridge pattern described for
GmKTI (Fig. 6). In this way, the amylase inhibitory function,
as it was above seen for trypsin inhibitors, is associated with
different structural conformations, but in this case similar
regions of the structurally related a-amylases interact with
the substrate in a way that appears to be different for the
different amylase inhibitors [67].

Another example of different structure is elicitins pro-
duced by the pathogenic fungal Phytophthora genus. Elic-
itins are small fungal elicitor proteins able to bind and trans-
fer sterols between artificial membranes, as LTPs do with
lipids [45]. Tertiary structure of elicitins is different from the
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Fig. 6. Schematic representation of the disulfide bond patterns and tertiary
structure in Phytophthora cryptogea b-cryptogein b-elicitin [18], wheat
a1-purothionin [16], Raphanus sativus AFP1 defensin [11], BBI (bifunctio-
nal soybean Bowman–Birk) [78] and BASI (barley a-amylase-subtilisin
inhibitor) [75]. Symbols placed above the protein schemes indicate the
protein regions corresponding to a-helix (boxes with points) and b-strand
(horizontal arrows) structures. Recognition loop sites for trypsin and chy-
motrypsin enzymes are indicated by boxes with diagonal and vertical lines,
respectively. Cysteine positions are indicated by vertical lines on the protein
schemes. BASI Arg 155 involved in inhibition of barley a-amylase isozyme
(AMY2) is indicated by a vertical line under BASI schema. Protein amino
acid number is indicated at the right of the protein schemes. BASI sequence
is represented with a dotted line instead of a continuous one, to indicate that
it is represented in a different scale with respect to the other proteins
described in the Figure. X makes reference to the number of aminoacids
residues present between cysteines in the different cysteine patterns descri-
bed for each group of proteins.
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one described for LTPs. For the b-cryptogein b-elicitin pro-
tein, five a-helices and two b-sheets and a X loop have been
defined forming a hydrophobic cavity of highly conserved
residues that could be the plausible binding functional site
[18]. In this case, the structure is stabilized by three disulfide
bridges (Fig. 6).

Other small cysteine containing proteins involved in plant
defense response, as some described 8CM domain proteins
are thionins and defensins [10]. Thionins are proteins with
six or eight-cysteines, localized in protein bodies and/or cell
walls of different species [21], while defensins have eight- or
10-cysteines and are localized in vacuoles or cell walls [11].
In both cases the mature proteins have a half of the amino
acids of the 8CM protein domain. Thionin tertiary structure
as described for a1-purothionin [16] results in a hydrophobic
underside with a structure of a Greek gamma letter, where the
vertical stem is a pair of a-helices and the horizontal arm are
a strand and short antiparallel b-sheet stabilized by four
disulfide bridges (Fig. 6) in the core of the protein [16].
Defensins have adopted a different conformation [11], with a
triple stranded antiparallel b-sheet, and a single a-helix lying
in parallel with the b-sheet stabilized by four [42] or by five
bridges, as run in PhD1-2 defensin where the two additional
cysteines form a new cysteine bond [35,42](Fig. 6).

A different case is that of some cereal storage prolamins
that have a modified 8CM pattern of cysteines either by the
addition or deletion of these residues. The structure of a
prolamin, a wheat c-gliadin, has been studied by circular
dichroism of the full protein and of two peptides correspond-
ing to the repetitive and non-repetitive domain indicating a
structure of a-helices stabilized by disulfide bridges in a
pattern different from the one described for 8CM proteins
[70]. It has been proposed that prolamins may have the same
evolutionary origin that 8CM proteins do [34,61–62]. For all
these proteins, three common regions A, B and C have been
described in the non-repetitive protein domain. The same
regions have been shown to be present in 2S-albumins and
8CM protease inhibitors, also described herein [34,61–62].
As these regions show sequence similarity with each other, it
has been proposed that they may have evolved from a single
short ancestral sequence [62]. Correspondence between A–C
prolamin regions and the 8CM family described here is
deduced from their comparison with EcRATI and HvTI
(Fig. 3) [62].

6. Conclusion

The presence of the 8CM in a large family of proteins
(around 500 sequences currently present in databases) hav-
ing very different functions allows to propose that this is a
motif that has essentially a structural and evolutionary mean-
ing, but that does not bear in itself a functional role. The
conserved structure includes four disulfide bridges and four
a-helices as observed in the proteins whose 3D-structure has
been solved so far. It is also possible to conclude that 8CM
proteins have a common ancestor with other proteins, such as

cereal prolamins, whose structure has significantly diverged
during the time course of evolution. Based on this 8CM
protein scaffold, the regions between the cysteine residues
would have evolved independently providing the necessary
flexibility to accommodate different functionalities. We pro-
pose that the 8CM proteins have evolved in different direc-
tions as a consequence of a set of different variations; for
instance, by the appearance of an internal hydrophobic cavity
adapted to lipid membrane transfer that results in LTPs, by
the addition of a proline-rich domain to a hydrophobic 8CM
in the case of HyPRPs or of a proline/glutamine-rich domain
in prolamin proteins, by the introduction of inhibitory ele-
ments in specific loops between helices and protein terminal
ends in cereal inhibitors, or by the introduction of sequences
that promote loop proteolytic cleavage in 2S-albumin fami-
lies. These modifications have resulted in contributions to the
defense program of the seed, in providing surface cell mark-
ers or in developing important allergens by not a well under-
stood scaffold modification, surface positive charge or local
glycosilation. Therefore, the 8CM appears as a common and
frequently used structure in plant proteins, a framework that
may serve to evolve different functions from a single se-
quence scaffold by adding, in a combinatorial way, specific
functional elements.
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