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Abstract The involvement of the maize ZmMYB42 R2R3-

MYB factor in the phenylpropanoid pathway and cell wall

structure and composition was investigated by overexpres-

sion in Arabidopsis thaliana. ZmMYB42 down-regulates

several genes of the lignin pathway and this effect reduces

the lignin content in all lignified tissues. In addition,

ZmMYB42 plants generate a lignin polymer with a

decreased S to G ratio through the enrichment in H and G

subunits and depletion in S subunits. This transcription

factor also regulates other genes involved in the synthesis of

sinapate esters and flavonoids. Furthermore, ZmMYB42

affects the cell wall structure and degradability, and its

polysaccharide composition. Together, these results suggest

that ZmMYB42 may be part of the regulatory network

controlling the phenylpropanoid biosynthetic pathway.

Keywords Arabidopsis thaliana � Maize �
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Introduction

Lignin is, after cellulose the most abundant component of

biomass (Boerjan et al. 2003). This polymer is synthesised

through the phenylpropanoid pathway, a metabolic grid that

synthesises other secondary metabolites such as flavonoids

and sinapate esters (Fig. 1). Lignin is deposited in the

secondary cell wall of vascular plants and its presence

increases the efficiency of water transport, the stiffness of

mechanical tissues and constitutes by itself a physical bar-

rier against microbial attacks. However, the covalent

interaction of lignin with cell wall polysaccharides makes
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this polymer undesired for biotechnological applications

(Torney et al. 2007; Li et al. 2008; Sticklen 2008; Vanholme

et al. 2008).

During the last years, a step forward to better understand

how lignification takes place has been achieved through the

identification of transcription factors regulating lignin

biosynthesis. Several proteins belonging to families such as

MYB, MADS-box, bHLH, KNOX, and LIM have been

shown to be involved in the regulation of lignification

(Tamagnone et al. 1998a; Jin et al. 2000; Kawaoka and

Ebinuma 2001; Mele et al. 2003; Arnaud et al. 2007;

Zhong and Ye 2007; Bomal et al. 2008).

Plant transcription factors containing the MYB domain

have been involved in several physiological and biochem-

ical processes (Martin and Paz-Ares 1997; Stracke et al.

2001; Bonke et al. 2003; Liang et al. 2005; Carlsbecker and

Helariutta 2005) and belong to a large multigene family

composed by 126 members in A. thaliana (Yanhui et al.

2006) distributed into 22 subgroups (Stracke et al. 2001). In

the case of monocot plants, the maize genome is expected to

encode more than 200 MYB proteins (Rabinowicz et al.

1999) while 183 MYB genes have been identified in the rice

genome (Jia et al. 2004; Yanhui et al. 2006). The

Antirrhinum majus AmMYB308 and AmMYB330 were the

first R2R3-MYB factors associated with the down-regula-

tion of lignification (Tamagnone et al. 1998a) and they were

shown to down-regulate three structural genes of the lignin

pathway (4CL1, C4H and CAD) when heterologously over-

expressed in tobacco plants. Later on Jin et al. (2000)

described a knock-out Atmyb4 plant displaying an increase

of the C4H gene expression and a decrease in CCoAOMT

gene expression. In both cases, the overexpression of Am-

MYB308, AmMYB330, and AtMYB4 in tobacco and A.

thaliana respectively, affected plant growth and develop-

ment (Tamagnone et al. 1998a, b; Jin et al. 2000). More

recently, the AtMYB32 factor has been proposed to repress

the A. thaliana COMT gene as the Atmyb32 mutant slightly

increases the expression of AtCOMT (Preston et al. 2004).

Similarly, the Eucalyptus gunnii EgMYB1 factor has been

also proposed as a repressor of lignification (Legay et al.

2007). Interestingly, all these repressors belong to the

subgroup 4 of the R2R3-MYB transcription factors.

Many R2R3-MYB proteins belonging to other sub-

groups have been described as regulators of lignification,

such as Pinus taeda PtMYB1 and PtMYB4 (Patzlaff et al.

2003a, b), poplar PttMYB21a (Karpinska et al. 2004),
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Fig. 1 The phenylpropanoid biosynthetic pathway. Monolignol bio-

synthesis: PAL, phenylalanine ammonia-lyase; C4H, cinnamate 4-

hydroxylase; 4CL, 4-coumarate-CoA ligase; CCR, cinnamoyl-CoA

reductase; CAD, cinnamyl alcohol dehydrogenase; HCT, hydroxy-

cinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase;

C3H, 4-coumarate 3-hydroxylase; COMT, caffeic acid o-methyl-

transferase; CCoAOMT, caffeoyl-CoA o-methyltransferase; F5H,

ferulate-5-hydroxylase. Flavonoid biosynthesis: CHS, chalcone syn-

thase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; F30H,

flavonoid 30-hydroxylase; FLS, flavonol synthase; UGTs, UDP sugar

glycosyltransferases. Sinapate-ester biosynthesis: ALDH, aldehyde

dehydrogenase; SGT, sinapate UDP-glucose sinapoyltransferase;

SMT, sinapoylglucose malate sinapoyltransferase. Question mark

refers to enzymatic steps not fully characterised. Small arrows in

brackets indicate the genes whose expression is repressed by

ZmMYB42 in A. thaliana (with the exception of CHS gene which

is induced). A. thaliana mutants for genes involved in phenylprop-

anoid synthesis are indicated in brackets
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AtMYB61 (Newman et al. 2004), EgMYB2 (Goicoechea

et al. 2005), Vitis vinifera VvMYB5a (Deluc et al. 2006)

and tobacco NtMYBJS1 (Gális et al. 2006). These factors

have been associated with the regulation of lignin biosyn-

thesis through their in vitro interaction with ACI, ACII, and

ACIII cis-elements typically recognised by these tran-

scription factors (Romero et al. 1998).

In maize, few members of the R2R3-MYB family have

been characterised so far. This is the case for C1 and PL

(Paz-Ares et al. 1987; Marocco et al. 1989; Cone et al.

1993; Pilu et al. 2003), P (Grotewold et al. 1991, 1994),

Zm1 and Zm38 (Franken et al. 1989; Marocco et al. 1989),

all of which are involved in the regulation of flavonoid

biosynthesis. Another R2R3-MYB factor has been cloned

and proposed to participate in maize heterosis (Ju et al.

2006) while other maize factors, such as ZmMYB-IF35,

have been associated with secondary metabolic pathways

(Heine et al. 2007). Recently five new maize R2R3-MYB

factors, ZmMYB2, ZmMYB8, ZmMYB31, ZmMYB39, and

ZmMYB42, have been identified and we have shown that

two of them, ZmMYB31 and ZmMYB42, act as repressors

of lignin biosynthesis (Fornalé et al. 2006).

In this work, we have investigated the role of ZmMYB42

in the biosynthesis of the lignin polymer and studied its role

in the regulation of other branches of the phenylpropanoid

pathway, such as the biosynthesis of sinapate esters and

flavonoids. In addition, we have also investigated the effect

of ZmMYB42 on cell wall structure, polysaccharides con-

tent and composition, and cell wall degradability.

Material and methods

Plant material

Arabidopsis thaliana (ecotype WS) plants were grown under

standard greenhouse conditions (25�C day and 22�C night

with 60% humidity) and a 16/8 hr photoperiod. For the in

vitro culture, plants were grown in solid MS medium (Mu-

rashige and Skoog 1962) supplemented with 1% sucrose in

Petri dishes and kept in growth chamber at 22 ± 2�C with a

16 h light period. The transgenic plants used in this work

have been already published (Fornalé et al. 2006) and several

independent transgenic lines were studied.

Isolation of total RNA, RT-PCR and PCR

Total RNA was extracted with Trizol Reagent (Invitrogen)

and 4 lg of total RNA were reverse-transcribed using M-

MLV Reverse Transcriptase (Invitrogen). First-strand

cDNA was generated using an oligo(dT)15 primer, and 2 ll

of the first-strand cDNA used as a template in subsequent

PCR reactions. Gene-specific primers were used to amplify

ZmMYB42, and ‘‘no-RT’’ PCR assays were performed to

confirm the absence of genomic DNA contamination. For

each assay, several numbers of cycles were tested to ensure

that the amplification was in the exponential range. The

gene-specific primers used in this work are reported in the

Supplementary Table S1 online.

Histology

Cross-sections (150 lm thick) of the basal part of inflores-

cence stems were obtained using a vibratome (Vibratome

Series 1000, TPI Inc., St. Louis, MO, USA) and stained as

follow. For the Wiesner staining, sections were incubated

for 1 min in 2% Phloroglucinol (w/v) in 95% ethanol, then in

50% HCl previous to the observation under light micro-

scope. For the Maüle staining, sections were stained for

10 min in 0.5% KMnO4 (w/v) solution. After a brief wash in

distilled water, samples were incubated for 5 min in 10%

HCl, washed with distilled water and mounted onto micro-

scope slides using a concentrated NH4OH solution for

observation under light microscopy.

Lignin auto-florescence was detected using UV-excita-

tion under DAPI-filter and the thickness measurement of

lignified tissues was performed using the ImageJ 1.38x

program (Rasband 2007).

Assay of Klason lignin

Lignin content from Arabidopsis thaliana mature stems was

quantitatively measured using the Klason method (Kirk and

Obst 1988). Briefly, plant material was extracted four times

in methanol and vacuum dried. 100 mg of the samples were

hydrolysed in 2 ml of 72% (v/v) H2SO4 at 30�C for 1 h. The

hydrolysate was diluted with 56 ml of water and autoclaved

for 1 h. The sample solution was filtered through a fritted

glass-crucible and lignin was measured and expressed as

mg of Klason lignin per gram of cell wall residue.

Analysis of lignin monomer composition

The analysis was carried out by the CuO oxidation method

(Kögel and Bochter 1985; Heddges and Mann 1979).

Briefly, mature stems from 30 wt and ZmMYB42 plants

respectively were collected and immediately frozen and

grounded in liquid nitrogen. After extraction in 20 volumes

of methanol, the extract-free samples were dried and ali-

quots of 50 mg of dried plant material were placed in a

sealable Pyrex tube, together with 100 mg of CuO, 200 mg

of Fe2SO4 and 10 ml of 2 M NaOH were added and a

stream of N2 was bubbled through the solution. The tube

was sealed under a N2 stream and placed at 170�C for 2 h,

with occasional shaking. Tubes were cooled to room tem-

perature and their content was transferred to polypropylene
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tubes and centrifuged at 3,000 rpm. The pellet was washed

with 20 ml of distilled water, centrifuged, and the new

supernatant pooled with the previous one. The extract was

then acidified with HCl to pH 1, centrifuged again and the

pellet washed with 0.1 M HCl. The acidified extract was

then filtered through a Waters sep-pack cartridge (Waters)

and dried under a N2 stream, and eluted, first with 2 ml ethyl

acetate, then with 1 ml acetonitrile. Eluates were collected

in Pyrex vials, dried under N2 stream and re-dissolved with

1 ml methanol for the HPLC analysis.

The separation and quantitation of the phenolic units

was performed with a chromatograph under the following

conditions. Injected volume: 20 ll. Column: Teknokroma

Tracer Extrasil ODS2 column of 5 mm, 25 9 0.46 cm.

Eluents: (a) 0.05% H3PO4, (b) acetonitrile. Flux:

1 ml min-1. Temperature: 40�C. Gradient: 10% A at the

start, increasing slowly up to 17% in 40 min. The column

was washed with 100% acetonitrile between two samples,

following the sequence: 17% to 100% in 10 min, 100%

during 5 min, dropping to 10% in 10 min, 5 minutes in

10% A to recover a total equilibrium. Phenolic compounds

were detected at 280 nm.

Organic extraction of soluble phenolics and high-

performance liquid chromatograph with diode array

detection (HPLC/DAD)

Leaves or stems (ca. 500 mg) from wt and ZmMYB42

plants were frozen in liquid N2 and extracted as previously

reported (Pérez-Jiménez and Saura-Calixto 2008). Samples

were analysed by HPLC/DAD on a Hitachi (San Jose, CA,

USA) Lachrom Elite HPLC system equipped with a qua-

ternary pump, temperature control unit and photo-diode

array UV detector (DAD) fitted with a Kromasil C-18

(Tecknokroma, Madrid, Spain) column (25 9 0.4 cm i.d.,

100 Å, 5 l particle size). Acquisition was made using

EZChrom Elite version 3.1.3 from Scientific Software Inc

(Pleasanton, CA, USA). Loads: 50 ll. Elution with a bin-

ary system of solvents [A] 0.1% (v/v) aqueous TFA, [B]

0.05% TFA in CH3CN under gradient conditions percent-

age [B] from 0 to 8 over 5 min; 8 to 10 over 10 min and 10

to 50 over 30 min followed by washing 100% CH3CN for

10 min and re-equilibration of the column to the initial

gradient conditions.

High-performance liquid chromatography–electrospray

mass spectrometry (HPLC/ESI/MS)

Analyses were performed on a HPLC/MS system, con-

sisting of a LC200 pump, PE Nelson 1050S integrator

(Perkin Elmer, USA) fitted with a reversed phase Phe-

nomenex (Torrance, CA, USA) Luna C18 (2) column

(150 9 2.0 mm i.d, 5 lm particle size) coupled to a

API3000 triple quadrupole mass spectrometer PE Sciex

(Concord, Canada) with a turbo ion spray source that was

used to obtain the MS/MS data. HPLC elution conditions:

[A] 0,1% aqueous formic acid, [B] CH3CN gradient from 5

to 23 over 30 min followed washing and equilibration of

the column to the initial conditions. The flow rate was

0.4 ml min-1. Ionisation (negative mode) conditions:

capillary voltage -3500 V, nebulizer gas (N2) 10 (arbitrary

units), curtain gas (N2) 12 (arbitrary units), focusing

potential -200 V, entrance potential 10 V, drying gas (N2)

heated to 400�C. Analysis of the ions was carried out using

full scan (FS) data acquisition from m/z 100 to 800 l in

profile mode and using a cycle time of 2 s with a step size

of 0.1 l and a pause between each of 2 ms. To confirm the

identity of some of the compounds, neutral loss (NL)

experiments by tandem mass spectrometry (HPLC/ESI/

MS/MS) were performed.

HPLC/DAD/MS analysis of sinapate esters

The HPLC/DAD profile after injection of the polyphenolic

extract from leaves included a major peak corresponding to

sinapoylmalate as ascertained by UV spectrophotometry

and LC/ESI/MS. The UV spectrum (190–600 nm) of this

peak on HPLC-DAD was compatible with sinapate. Two

major MS signals recorded in the negative mode, namely

the molecular ion (m/z 339.2, MW sinapoylmalate 340) and

a fragment corresponding to the sinapate moiety (m/z

223.1) revealed the structure of this major phenolic.

Auxin transport assay

Auxin transport was measured according to Besseau et al.

(2007). A 2.5-cm segment of flowering stems was excised

5 cm above the base of the stem. Segments were placed in

a 1.5-ml microcentrifuge tube and the apical ends sub-

merged in 30 ll of MES buffer (5 mM MES and 1%

sucrose, pH 5.5) containing 1 lM indole-3-acetic acid and

66 nM of tritiated indole-3-acetic acid. After 4 h of incu-

bation in the dark, segments were removed and the last

5 mm of the non-submerged ends were excised and placed

in 2.5 ml of liquid scintillation cocktail (Optiphase-high-

safe 2, Perkin-Elmer). Samples were slowly shaken

overnight before measuring radioactivity in a scintillation

counter (Beckman LS6000 SC).

Cell wall analysis

Dried plant material (1 g) was added to Poly-Prep tubes

and extracted with 10 volumes of 70% EtOH for 5 days at

room temperature with wheel-shaking, then washed

6 times with 70% EtOH, 6 times with acetone, and air-

dried to obtain the alcohol insoluble residue (AIR). AIR
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was then de-starched, treated with acidified phenol and

washed with organic solvents to obtain the cell wall residue

as previously described (Encina et al. 2002).

Neutral sugar analysis was performed according to

Albersheim et al. (1967). Dried cell walls were hydrolysed

with 2 M TFA (trifluoroacetic acid) for 1 h at 121�C and

the resulting sugars were derivatised to alditol acetates and

analysed by gas chromatography (GC) on a Supelco SP-

2330 column. Uronic acid contents were determined by the

m-hydroxybiphenyl method (Blumenkrantz and Asboe-

Hansen 1973), with galacturonic acid as a standard. Cel-

lulose was quantified in crude cell walls by the Updegraff

method (Updegraff 1969) with the hydrolytic conditions

described by Saeman et al. (1963) and quantification of the

glucose released by the anthrone method (Dische 1962)

with glucose as a standard.

For the cell wall degradability assays, cell walls were

hydrolysed (20 mg/1.5 ml) in a mixture of Cellulase R10

(1%); Macerozyme R-10 (0.5%) and purified Driselase

(0.1%) dissolved in sodium acetate 20 mM (pH 4.8). Ali-

quots were taken at 6, 48 and 72 h, clarified by

centrifugation and assayed for total sugars (Dubois et al.

1956).

UV treatment

UV-B treatment was performed according to Jin et al.

(2000). Plants were grown for 10 days onto solid MS

medium. The lids of Petri dishes were removed and plants

were irradiated for 10 min with a short wave transillumi-

nator. After exposure, plants were grown for one week

more and then photographed.

Measurement of soluble phenolics

Total phenolic quantitation was performed according to

Cliff et al. (2007). Stems were extracted with 10% EtOH

(0.1 mg FW/ll). A 10 ll aliquot of each sample was added

to 10 ll of 0.1% HCl in 95% ethanol and 182 ll of 2%

HCl. Each sample was vortexed and allowed to stand for

15 min. Absorbance was measured at 280, 360, and

520 nm using a Shimadzu UV-1630 spectrophotometer.

Phenolic content was determined from standard curves

obtained using dilutions of gallic acid, rutin and cyanidin

chloride at 280, 360, and 520 nm, respectively.

Electron microscopy assays

Hand-cut transverse sections of the basal region of stems of

5-week-old plants were processed for TEM as previously

described (Day et al. 2005). Wall polysaccharides of ultra-

thin transverse sections (50 nm) were PATAg (Periodic

acid-thio carbohydrazide silver proteinate) stained

according to Ruel et al. (1977). Observations were per-

formed at 80 kV with a Philips CM 200 Cryo-electron

microscope.

Results

Phenotype of A. thaliana plants overexpressing

ZmMYB42

Transgenic plants overexpressing ZmMYB42 show several

phenotypic alterations (Fig. 2a) at the macroscopic level:

they are dwarf with smaller leaves that present a severe

adaxial curvature and an altered vascular network charac-

terised by a reduced number of tertiary veins. Previous

studies have shown that the overexpression of R2R3-MYB

factors acting as repressors of lignification produces alter-

ations of the leaf morphology, with the appearance of white

lesions on the older leaves, and reduction of the growth rate

when overexpressed in tobacco and A. thaliana (Tamag-

none et al. 1998a; Jin et al. 2000). In the case of

ZmMYB42, transgenic plants do not present these white

lesions.

ZmMYB42 affects lignin biosynthesis

The lignification pattern in different tissues of wt and

ZmMYB42 plants was analysed by Wiesner staining

(Figs. 2b, 3). In stem cross-sections of wild type and

transgenic plants, xylem vessels (X) and interfascicular

fibres (IF) regions are stained with a red colour, indicative

of lignin deposition. However, transgenic stems retain less

colour intensity than wild type (Fig. 2b).

Transgenic stems are thinner than the wild type ones

(about 65%) and while lignified tissues contain 5-6 cell

layers in wild type, transgenic plants display a reduction of

approximately 3 cell layers and do not develop secondary

xylem at least in the interfascicular region (Fig. 2b).

Despite the reduction of lignified layers, the thickness of

vascular bundles is not affected in transgenic plants when

compared to the stem size (Fig. 2c). In contrast, the

thickness of the area of interfascicular fibres decreases by

about 30% (Fig. 2c).

Mature siliques of plants expressing ZmMYB42 show

reduced colour intensity both in the replum and pedicel,

indicative of reduced lignin content (Fig. 3). Both the lig-

nified valve marginal cell and endocarp b regions of the

silique are also reduced in the transgenic lines (Fig. 3).

We determined the absolute lignin content by the Klason

method. This result shows that ZmMYB42 plants have 60%

reduction of total lignin content compared to wt plants

(Fig. 4a). We also analysed the lignin monomer composi-

tion by staining stem cross sections with the Maüle reagent
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that stains the S subunits of the lignin polymer specifically.

Wild type plants exhibit two staining patterns (Fig. 3): dark

red staining is detected in the IF region, indicative of S-

enriched lignin, while the fascicular region stain slightly

yellow-red, reflecting the deposition of G-enriched lignin.

The transgenic ZmMYB42 stem show the same pattern,
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even though the staining intensity is strongly reduced, in

accordance with the reduced lignin content indicated by the

Wiesner staining. However, the bright yellow staining of

the fascicular region indicates a decrease of S-lignin in this

tissue compared to the wild type plants.

A similar result was obtained with mature siliques:

besides the general reduction of the stained tissues, the

weaker red staining of transgenic siliques indicates a

reduction of S-lignin in the lines expressing ZmMYB42.

To quantify the effect of ZmMYB42 on lignin monomer

composition further, we performed HPLC analysis of the

phenolic compounds obtained from cell walls of the control

and transgenic plants (Fig. 4a). We observed a huge

increase in P-hydroxybenzaldehyde accounting for a 4-fold

increase in the H subunits in the lignin of ZmMYB42

expressing plants and a strong reduction of syringic acid,

accounting for a 50% reduction of S subunits, even when

this method overestimates the S subunits (Lewis and

Yamamoto 1990; Heddges and Mann 1979). We observed

a 70% increase in G subunits due to an increased accu-

mulation of vanillin. All these changes lead to a 3.4-fold

reduction of the S/G ratio of transgenic plants compared to

control plants. Thus, the over-expression of ZmMYB42

leads to substantial differences in lignin composition

compared to the control samples, in line with the histo-

logical staining obtained with the Maüle reagent.

Interestingly, the expression of this maize transcription

factor in A. thaliana leads to the production of a lignin

polymer with a final composition more similar to that of

maize.

In addition to the major lignin-derived compounds,

levels of P-coumaric and ferulic acid were analysed. While

the endogenous levels of P-coumaric acid are not affected

in ZmMYB42 plants, ferulic acid increases 2-fold in

transgenic plants compared to wt plants (Fig. 4b).

To further understand the function of ZmMYB42 we

analysed the expression of all the genes involved in ligni-

fication (Fig. 4b). Our analyses showed that the

accumulation of PAL1 mRNA (in addition to C4H, and

4CL1; Fornalé et al. 2006), is reduced in ZmMYB42

transgenic lines. This means that ZmMYB42 represses the

expression of the three genes of the general phenylpropa-

noid metabolism which is in line with the reduction of the

total lignin content in transgenic plants. In addition, the

repression pattern of HCT and F5H1 (in addition to

COMT1 and CAD6; Fornalé et al. 2006), is in line with the
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determination from wt and
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Klason method. b HPLC

analysis of lignin composition
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alteration in the final lignin composition of the transgenic

plants. On the other hand, the expression of C3H,

CCoAOMT and CCR genes is not affected by ZmMYB42.

ZmMYB42 affects cell wall structure, polysaccharide

content, composition and degradability

The huge reduction of lignin and its altered S/G ratio led us

to investigate whether these changes affected the structure

of the cell wall of ZmMYB42 plants. Therefore, we ana-

lysed by TEM (transmission electron microscopy) the cell

wall structure of wild type and transgenic plants (Fig. 5a).

The modifications induced by ZmMYB42 essentially affect

the interfascicular fibres. In ZmMYB42 plants, the sec-

ondary cell wall thickenings are interrupted by a greater

number of wide ‘‘pits’’ in which the primary wall is clearly

visible and sometimes extended between two cell corners.

In addition, the interrupted secondary wall of the transgenic

plants exhibits a weaker delimitation between S1 and S2

sub-layers. It is worth noting that the reactivity to PATAg

of ZmMYB42 fibre walls appears enhanced. This may be

explained by an enhanced accessibility of polysaccharides

to the periodic acid treatment due to the reduced lignin

content.

As lignin interacts with polysaccharides within the cell

wall and putatively constitutes a competing carbon sink,

we also investigated whether ZmMYB42 affected the cell

wall polysaccharide content and composition by GC

analysis. The cell wall yield does not vary between wild

type (0.59 ± 0.02) and plants overexpressing ZmMYB42

(0.60 ± 0.02). As shown in Fig. 5b, while cellulose

content is not significatively affected by the overexpres-

sion of ZmMYB42, a broad alteration in cell wall

composition is detected. In particular, a general increase
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wall structure and composition.

a Transmission electron

microscopy after PATAg

staining of interfascicular fibres
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Pit-Membrane; PW, primary

wall; SW, secondary wall; S1

and S2, secondary cell wall sub-
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line circle indicates the
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transgenic cell walls. b Sugar

analyses of cell walls from
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plants. Data are expressed as
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significant differences by
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Resistance of cell walls to

digestion with polysaccharide
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of polysaccharides habitually present in the primary cell

wall (arabinose, galactose, uronic acids, rhamnose and

fucose) is observed while a decrease of xylose, a sec-

ondary cell wall polysaccharide, is also observed.

However, these changes do not lead to significant changes

in the amounts of total sugars in transgenic cell walls with

respect to wild type plants.

The observed changes in lignin, cell wall structure and

polysaccharides in the cell wall prompted us to determine

whether the transgenic cell walls were more susceptible to

enzymatic degradability. Our results indicate that

ZmMYB42 plants have cell walls more degradable when

treated with the cellulase-macerozyme-driselase enzymatic

cocktail (Fig. 5c).

ZmMYB42 plants have reduced levels

of sinapoylmalate

Similarly to what observed in the case of the fah1-2 and the

ref8 mutants (Franke et al. 2002), ZmMYB42 plants show a

red colour when visualised under UV-A, suggesting a

reduction of sinapoylmalate (Fig. 6a). We therefore ana-

lysed by HPLC/DAD/MS extracts of 4-week-old rosette

leaves and the results obtained confirmed that transgenic

plants show a strong reduction of this compound (Fig. 6b).

As sinapoylmalate plays a central role as a UV-protec-

tant in A. thaliana, we investigated whether ZmMYB42

plants were more sensitive to the UV-B radiation. Thus, we

treated 10-days old wild type and transgenic plants with

10 min UV-B light and we analysed their response. After

7 days, transgenic plants show yellowing leaves, indicative

of a severe and extensive damage compared to the wild

type plants (Fig. 6c). The expression analysis of the main

genes involved in sinapoylmalate biosynthesis indicated

that ZmMYB42 represses the ALDH gene (Fig. 6d). As

AtMYB4 has been shown to affect the synthesis of sina-

poylmalate (Jin et al. 2000; Hemm et al. 2001) we also

investigated whether ZmMYB42 could affect the expres-

sion of this transcription factor. Our results show that

AtMYB4 gene expression is reduced in ZmMYB42 plants

(Fig. 6d).

ZmMYB42 represses flavonol biosynthesis

The observation of stem cross-sections of ZmMYB42

plants under UV light indicates an altered fluorescence,

indicative of possible changes in flavonoid accumulation

compared to wild type plants (Fig. 7a).

As ZmMYB42 represses the expression of genes of the

core phenylpropanoid pathway, we investigated whether

this factor could regulate other branches of this complex

network, such as the one leading to the synthesis of

flavonoids (Fig. 1).

Thus, we performed a quantitative analysis of the main

phenolics from 2-month old plants, which revealed that

ZmMYB42 plants present more than a 66% reduction of the

total phenolic content compared to the wild type plants. This

decrease is mainly due to the huge reduction of flavonols

(about 50% of the wild type), while the anthocyanins level

remains practically unchanged (Fig. 7b). The HPLC/DAD/

MS analysis indicated that the reduced flavonol content is

mainly due to a decrease in the accumulation of flavonols

belonging to the kaempferol family (Fig. 7c).

As previous studies demonstrated that flavonoids are

negative regulators of auxin transport (Jacobs and Rubery

1988), we investigated whether this reduction of flavonols

affected the transport of these hormones using a radio-

chemical method. The results obtained indicate that auxin

transport in ZmMYB42 plants is not affected compared to

wild type plants (Fig. 7d).

Finally, we performed RT-PCR assays to study the

effect of ZmMYB42 on the main genes of the flavonoid

pathway (Fig. 1). Our results indicated that ZmMYB42

down-regulates the F3H and F30H gene expression. In

contrast, the mRNA accumulation of the CHS gene is

increased compared to wild type plants (Fig. 7e).

Discussion

In a previous studies, we reported the isolation of

ZmMYB42, a new R2R3-MYB factor belonging to the

subgroup 4 that down-regulates the maize and the A. tha-

liana COMT genes and we showed that transgenic plants

overexpressing this factor contain only half of the total

lignin content (Fornalé et al. 2006). Here we characterised

the effects of ZmMYB42 in relation to lignin biosynthesis

and also to other branches of the phenylpropanoid pathway.

ZmMYB42 plants are dwarf and their leaves are severely

curved with a reduction of their vascular network. The

reduced growth may be caused by the difficulty of plants in

producing vascular and mechanical tissues. Similar phe-

notypes appear in mutants with reduced lignin content (e.g.

ref8 mutant; Franke et al. 2002).

The strong reduction of lignin content was observed in

all lignified tissues when analysed by phloroglucinol

staining. In addition, we showed that in transgenic plants,

there is a strong reduction of the S/G ratio of the lignin

polymer, due to both a decrease of the S subunits and an

increase of the G subunits. Indeed, the appearance of high

levels of H subunits makes the final lignin polymer of the

ZmMYB42 A. thaliana plants more similar to that typically

produced by maize.

The impact on lignin content and composition caused by

ZmMYB42 relies on the downregulation of the phenyl-

propanoid pathway (Fig. 1); the general phenylpropanoid

Plant Mol Biol (2009) 70:283–296 291

123



genes (PAL, C4H, and 4CL), several genes involved in the

conversion from esters to aldehydes and alcohols (HCT and

CAD) and genes belonging to the branches leading to the

production of the three main monolignols (F5H and

COMT). In contrast, C3H, CCoAOMT and CCR genes are

not regulated by this transcription factor (Figs. 1, 4).

Together, and in accordance with previous observations

(Ralph et al. 2008) these results show once more the high

level of flexibility of the phenylpropanoid pathway.

Several reports have shown that reduction of CAD

(Sibout et al. 2003), F5H (Marita et al. 1999) and COMT

(Goujon et al. 2003; Do et al. 2007) results in a decrease of

the S units in the final lignin polymer. In agreement with

these results, the repression of F5H, COMT and CAD genes

produces a lignin polymer strongly depleted in S units. In

addition, the increased levels of ferulic acid are not

expected if this compound is produced by COMT, as this

gene is repressed in ZmMYB42 plants. Thus, this finding is

in line with other works indicating that COMT does not

catalyse the in vivo methylation of caffeic acid to produce

ferulic acid (Do et al. 2007). Together, the overall pattern

of repression of the lignin genes accounts for the reduced

capacity of transgenic plants to produce S units.

Cell walls of transgenic fibres show an altered structure

characterised by a higher number of pit-membranes and a

reduced thickness of secondary cell walls. The increase of

Wild type 35S::ZmMYB42

UV-A

35S::ZmMYB42

Wild type

10 min UV-BNot irradiated

(A)

(C)

ALDH

SGT

SMT

MYB42

Actin

MYB4

MYB42Wt(D)

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
m

A
U

-5

0

5

10

15

20

25

30

35

40

Retention time (min)

Wild type

ZmMYB42

Sinapoylmalate

Sinapoylmalate

(B)

Fig. 6 ZmMYB42 represses sinapoylmalate biosynthesis. a Pheno-

type of wt and transgenic plantlets exposed to UV light. b HPLC-

DAD analysis of sinapoylmalate content in leaves of wt and

transgenic plants. c Phenotype of 20-days old wt and transgenic

plantlets submitted to 10 min UV irradiation. d Relative expression of

the genes involved in sinapoylmalate synthesis and of AtMYB4 gene

292 Plant Mol Biol (2009) 70:283–296

123



PATAg staining in transgenic plants also suggests that the

reduction of the lignin content leads to a looser interaction

between cellulose microfibrils which favours the

enhancement of the size of silver grain deposits. Similar

loosening of microfibrils association was previously

observed in relation to a decrease in syringyl units, sug-

gesting the important role of non-condensed substructures

in the secondary wall cohesion (Ruel et al. 2001).

In addition to lignin content and composition, and cell

wall structure, ZmMYB42 also affects the cell wall com-

position. Our results show that the majority of primary cell

wall type monosaccharides are increased while xylose,

present in the secondary cell wall, is decreased. Therefore,

cell wall compositional analysis indicates an overall

enrichment in matrix polysaccharides that are characteris-

tics of the primary cell wall. Based on these results it seems

that because of the reduction in lignin, ZmMYB42 stems

retain primary cell wall enriched tissues.

In agreement with the reduction of total lignin content

and the strong reduction of the S/G ratio, transgenic cell

walls are more degradable. Histological studies, together

with the reduction of the S subunits of the lignin polymer

and the electron microscopy data all indicate that

ZmMYB42 mainly affects the development of the

mechanical tissues, which are normally enriched in S

subunits (Mellerowicz et al. 2001).

Plants having a reduction of C4H (Jin et al. 2000), F5H

(in the fah1 mutant; Ruegger et al. 1999), C3H (in the ref8
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Kaempferol 3-O-rhamnosyl-glucoside 7-O-rhamnoside (m/z 739.3,

MW 740); b: Kaempferol 3-O-glucosyl-glucoside 7-O-rhamnoside

(m/z 755.1, MW 756); c: Kaempferol 3-O-glucoside 7-O-rhamnoside

(m/z 593.4, MW 594); d: Kaempferol 3-O-rhamnoside 7-O-

rhamnoside (m/z 577.2, MW 578)). The structures were confirmed

by neutral loss experiments (MS-MS). The losses detected were

rhamnoside moieties (146 mass units) from each of the four flavonol

glycosides and an additional glucoside moiety (162 mass units) from

kaempferol 3-O-glucoside-7-O-rhamnoside. d Auxin transport deter-

mination in wt and transgenic plants. Data correspond to the mean

value ± SD of three independent assays. e Relative expression of the

main genes involved in flavonol synthesis
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mutant; Franke et al. 2002) and COMT gene expression (in

the Atomt1 mutant; Goujon et al. 2003; Do et al. 2007)

show a reduction in the synthesis of sinapoylmalate and

display red fluorescence when visualised under UV light.

Accordingly, ZmMYB42 represses C4H, F5H, and COMT

gene expression, and thus transgenic plants have a strong

reduction in sinapoylmalate as demonstrated by HPLC/

DAD/MS, the observation under UV light and the

increased sensitivity to UV-B irradiation. In addition,

ZmMYB42 also represses the expression of ALDH gene,

which is the first specific enzyme for the synthesis of si-

napoylmalate (Fig. 1). This result is in line with what

observed in the Arabidopsis ref1 mutant in which the

mutation of the ALDH gene results in a strong reduction of

the sinapate esters (Nair et al. 2004).

The involvement of C4H repression in the synthesis of

sinapoylmalate was described through the study of AtMYB4

gene (Jin et al. 2000), a repressor of sinapoylmalate syn-

thesis. In ZmMYB42 plants, the expression of AtMYB4

gene is downregulated. This behaviour could be the con-

sequence of a homeostatic response by which the

transgenic plants tend to counteract the effect produced by

the overexpression of ZmMYB42.

As mentioned above, ZmMYB42 also represses the

synthesis of PAL1, C4H, and 4CL genes. These genes are

involved in the core-phenylpropanoid pathway and cata-

lyse the synthesis of hydroxycinnamic acid intermediates,

which are precursors for the route-specific pathways lead-

ing to the synthesis of a wide range of secondary

metabolites such as flavonoids (Fig. 1). Transgenic plants

overexpressing ZmMYB42 have stems in which the cortex

region appears orange under UV light, suggesting an

alteration in the synthesis of some flavonoids. A deeper

characterisation revealed that transgenic plants have

decreased levels of total soluble phenolics and in particu-

lar, a strong reduction of flavonols belonging to the family

of kaempferol. Although ZmMYB42 induces the expres-

sion of CHS gene, the entry point to flavonoid biosynthesis,

no increased levels of naringenin chalcone were detected

(data not shown). However, ZmMYB42 represses the

expression of F3H and F30H genes, which could explain

the reduced levels of flavonols in transgenic plants.

Therefore, in addition to the strong reduction of sina-

poylmalate, the fact that transgenic plants are more

sensitive to UV irradiation could be, at least partially, also

caused by the reduction of the flavonol content as described

in the case of the transparent testa 4 (tt4) mutant (Li et al.

1993).

It has been reported that flavonoids are negative regu-

lators of the auxin transport (Brown et al. 2001; Besseau

et al. 2007). In our case, although ZmMYB42 have reduced

levels of flavonoids, the auxin transport is not induced in

transgenic plants, suggesting that a 50% reduction of

flavonols is not sufficient to increase the levels of auxin

transport.

Together, these results show that ZmMYB42 is a

general repressor of the phenylpropanoid pathway

affecting cell wall structure and composition when over-

expressed in A. thaliana. The reduction of the total lignin

content, the strong reduction of its S/G ratio, and the

increased cell wall degradability, makes this factor a good

candidate to control lignin metabolism in maize for bio-

technological applications.
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