Mrs, a new subfamily of Tourist transposable elements

Adolfo Río, Pere Puigdomènech and Josep M. Casacuberta*
Departament de Genètica Molecular, Centre d'Investigació i Desenvolupament (C.S.I.C.), Jordi Girona 18, 08034 Barcelona. Spain (*author for correspondence)

Received 12 April 1996; accepted in revised form 16 September 1996

Key words: MITE, Tourist, transposable element, Zea

Abstract

We have characterised a new family of repetitive sequences that we have named Mrs (maize repetitive sequences). Mrs elements are associated with different maize genes and seem to be specific for the genome of Zea species. Mrs elements are short, AT-rich and contain terminal inverted repeats (TIRs). The sequence of their TIRs, as well as the fact that they are flanked by short repetitions that tend to be TAA, allows us to propose Mrs as a new subfamily of Tourist transposable elements.

Transposable elements are usually divided into two classes: class I elements that transpose via an RNA intermediate, and class II elements that transpose via a DNA intermediate. Transposition is often a deleterious process for the genome. The insertion of a transposable element within a gene generates in most cases the inactivation or the deregulation of the gene, and usually leads to a detectable mutant phenotype. Unstable mutant phenotypes are due to the excision of the transposable element from its site, which sometimes restores the wild-type activity of the gene. As class I elements excise very rarely they are thought to be more mutagenic than class II elements. However, only class I elements have been frequently found associated with normal eukaryote genes [13].

In the past few years a new class of transposable elements has been described in plants. These elements, which are known as MITEs (miniature inverted-repeat transposable elements) have frequently been found in normal plant genes [13]. MITEs share characteristics with both class I and class II transposable elements and it is not known at present whether they transpose by a DNA intermediate or by a retrotranspositionrelated mechanism. The Tourist element, originally called MISD [14], was the first transposable element described belonging to the MITE family. This element is present in one-third of the genomic maize sequences
submitted to the databases, as well as in a large fraction of the rice, sorghum and barley gene sequences submitted [3]. Similarly, the other MITE element described, named Stowaway, has been found in association with normal genes of both monocotyledonous and dicotyledonous plants [4, 12]. Here we describe a new family of maize repetitive sequences that we have named Mrs (maize repetitive sequences). Mrs elements display some of the characteristics of Tourist MITE elements and can be found in association with functional genes.

A short DNA sequence frequently present in maize genes

During the characterisation of a genomic clone corresponding to CHT (an embryo-expressed maize gene homologous to a rice cDNA supposed to be related to chilling tolerance, accession number X96760), a short intronic sequence was found to have a high level of sequence similarity with different maize promoter sequences (Table 1). A sequence of 359 bp of the first intron of the CHT1 gene is 87% similar to a sequence located 480 bp upstream of the transcription start site of the maize chalcone flavone isomerase gene [6]. It also exhibits 86% similarity with a sequence located at position -360 nt within the ferredoxin-NADP reductase-
binding protein gene [10] and shows 68% similarity with a sequence located at -460 nt within the cab48 gene promoter [7]. A database search revealed a homologous sequence (69% similarity) present in a defective Spm element named Irma, which contains non-Spm sequences between Spm ends [9]. This dSpm element seems to be mobile as it has been found as an insertion in two different maize genes [9, 11]. The similarities and locations of the different sequences within the genes are summarized in Table 1. We have named this sequence $M r s$ (maize repetitive sequence).

Mrs has some of the features of a transposable element

No similarity was found between Mrs sequences and any other repetitive sequences described to date. Nevertheless, Mrs sequences have some of the characteristics of a transposable element. Hybridization of maize DNA with Mrs 1 shows that Mrs elements are dispersed in the maize genome (data not shown). The ends of Mrs elements are inverted repeated sequences of 14 bp (see Fig. 1A). Terminal inverted repeats (TIRs) are characteristics of DNA transposons and also of the new class of short mobile elements called MITEs. Mrs elements are, like MITEs, AT-rich and contain repeated sequences that could allow them to form stable secondary structures (see Table 1). In addition, Mrs TIRs have similarities with those of Tourist elements (see Fig. 1B) and, like Tourist, Mrs elements are flanked by 3 bp repetitions which are often TAA (see Fig. 1A). These similarities are particularly significant since the sequence of the TIRs and the size, and sometimes the sequence, of the target site duplication generated upon integration are believed to be specific for each family of transposable elements that share integration machinery. Tourist elements have been classified into 4 different subfamilies according to their sequences. Tourist A elements are short (135 bp on average) and contain several copies of a GGATT motif [2]. Tourist B elements are usually larger than A elements (240 bp on average) and are characterised by the presence of polyA-polyT sequences near the TIRs, and by a short sequence called box I. In addition, the elements belonging to this subfamily contain a characteristic 100 bp sequence that has been named domain I [3]. Class C elements are similar to class B elements but they contain an additional domain I^{\prime}, which is 70% homologous to domain I and is found in opposite orientation [3]. Tourist D elements do not contain any of the characteristic domains described above and they are variable in
length [3]. In addition to internal sequence similarities, the different Tourist subfamilies are defined by a consensus TIR sequence that is characteristic for each subfamily, even though the consensus TIR sequences are 60% homologous between all different Tourist subfamilies. Mrs internal sequences are not similar to those of any Tourist subfamilies, nor do they have any of the motifs that are characteristic of some of these elements. Thus, Mrs elements do not belong to any of the subfamilies of Tourist elements described to date. The homology that the consensus Mrs TIR sequences display with Tourist TIR sequences (65%), the preference for a TAA target site, in addition to the sequence characteristics described before, led us to propose Mrs elements as a new subfamily of Tourist elements.

Polymorphic presence of Mrs elements

The maize genome contains two genes encoding the embryo-expressedCHT gene (R. Roca, this laboratory, personal communication). To assess whether Mrs 1 was present in the homologous gene, we amplified by PCR the intron that contains Mrs 1 with oligonucleotides corresponding to flanking exonic sequences. The primers amplified a band of 1750 bp , which coincides with the expected size for the CHT1 region, and a band of 1200 bp . These two bands were able to hybridize with an exonic CHT probe, while only one of them hybridized with a probe corresponding to Mrs1 (data not shown). This strongly suggests that while both homologous genes were amplified with the primers, the Mrs insertion was present in only one of them. The cloning and sequencing of both PCR products showed that the introns of the two CHT genes are 80% identical except for an insertion of 362 bp in the CHT1 gene. This additional sequence can be easily explained by the insertion of the Mrsl element which generated a duplication of a short TTA sequence (Fig. 2). The polymorphic presence of Mrs1 and the target site duplication found confirms the mobile nature of the Mrs elements. We have cloned a partial cDNA from a maize embryo cDNA library corresponding to a CHT gene. The sequence of this cDNA exactly coincides with the one deduced from the CHT1 gene (data not shown). The sequences of CHT1 and CHT2 genes are only 80% identical within the region analysed, suggesting that the cDNA obtained corresponds to the CHT1 gene, and that the presence of the Mrs insertion within an intron does not inactivate this gene.

MITE elements are associated with many different plant genes. Stowaway elements have been described

Table 1. Characteristics of the different Mrs elements found in maize (1). Only partial sequences are available for these elements.

Element	Location	Position	Size	$\%$ Homology with Mrs 1	$\% \mathrm{AT}$	$\Delta \mathrm{G}^{\circ} \mathrm{kcal} / \mathrm{mol}$	Ref.
$M r s 1$	CHT1	Intron	359 bp	-	68	-72.8	this paper
$M r s 2$	CHI	5^{\prime}-flanking (-482)	$-(1)$	87	70	-78.5	$[6]$
$M r s 3$	Fnrbp	5^{\prime}-flanking (-362)	$-(1)$	86	71	-54.2	$[10]$
$M r s 4$	cab48	5^{\prime}-flanking (-458)	358 bp	68	77	-59.2	$[7]$
$M r s 5$	Irma	Non-Spm region	359 bp	69	72	-72.6	$[9]$

in both monocotyledonous and dicotyledonous plant genes [4] and Tourist elements have been found in association with the genes of many cereals [3]. Presence of the different subfamilies of Tourist elements depends on the genome studied. Tourist B elements have only been found in sorghum genes, while all the Tourist elements found in rice genes belong to the Tourist C subfamily of elements [3]. We were thus interested in analysing the presence of Mrs elements in different cereal genomes. The slot blot hybridizations in Fig. 3 show that Mrs elements are present in the genomes of the different Zea species analysed while they seem to be absent from Sorghum genome. The Zea mays W64 genome contains about 100 copies of the Mrs element. The Mrs copy number is similar in the genome of the other Zea species analysed ranging from $50-100$ copies in Zea mexicana to 500-1000 copies in the Palomero Toluqueño race of Zea mays. We have investigated the presence of Mrs 1 in the CHT1 gene in all these genomes by amplifying the intronic sequence that contains the insertion in the maize CHT1 gene with a pair of primers that specifically amplifies the intron of CHT1 gene. We amplified a single band in all the genomes tested including Sorghum, even though the amplified band was shorter in this genome (Fig. 4). These bands hybridized with a probe corresponding to CHT1 exonic sequences while only the bands corresponding to amplifications performed with DNA from the genus Zea were able to hybridize with an Mrs1 element probe (Fig. 4). The band amplified from Sorghum DNA failed to hybridize with the probe corresponding to the Mrs1 element. This confirms that Mrs1 is not inserted into the CHT1 intron in this species. This was further reinforced by the sequencing of the Sorghum band (data not shown). The distribution of Mrs elements seems thus different from those of the other Tourist subfamilies of elements. Mrs activity could be more recent than those of other subfamilies of Tourist elements as Sorghum, which is one of the genera
more closely related to Zea, seems to be devoid of Mrs sequences.

Mrs elements have been found associated to normal maize genes

Tourist elements have been found associated with normal plant genes. Elements of this family have been described in the 5^{\prime} - and 3^{\prime}-flanking regions, and in intronic sequences [2, 3]. Four of the 5 Mrs here described lie within normal maize genes. The fifth, Mrs5, has been found as an insertion within a non-Spm central sequence of a defective $d S p m$. The occurrence of mobile genetic elements inserted in other ones has been widely described and is understood to be a mechanism by which the deleterious effects of insertions are minimized. The Stowaway MITE element has initially been described as an insertion within a Tourist element [4], which demonstrates that MITE elements can also integrate within other transposons.

Three of the Mrs elements described here have been found within the promoter region of functional maize genes. The close proximity to the transcriptional start site (less than 500 nt) indicates that the insertion of these elements could probably modify the transcriptional regulation of the genes. Unfortunately, no detailed reports are available on the promoters of these genes that could confirm this aspect. Nevertheless, a 1100 bp region of the cab48 gene containing the 358 bp Mrs 4 element is sufficient to drive a high level of transcription in leaf derived protoplasts [7]. Interestingly the cab48 promoter displays an important sequence similarity with the $c a b-m 1$ gene promoter which lacks this insertion [1]. It would be very interesting to compare the regulation of cab-m1 and cab48 genes in order to determine the effect of Mrs elements insertion in maize gene promoters.

Mrs 1 has been found as an insertion in an intron of a normal maize gene. Different Tourist elements have

B

Figure 1. A. Multiple sequence alignment of Mrs sequences. Target sites duplications are shown by open arrows and terminal inverted repeats (TIRs) by solid arrows. Conserved nucleotides are indicated by white letters on a black background. B. Comparison of the Mrs elements consensus TIR sequence with the consensus TIR sequences of the different families of Tourist elements. Conserved nucleotides are indicated by white letters on a black background.
been found in introns [2,3]. The insertion in introns has also been reported for other transposable elements and, in some cases, they can behave as introns capable of perfect splicing out from the primary transcript [5]. Little is known about the mechanism of MITE transposition, and it is not clear whether these elements
transpose by a DNA intermediate or whether they are retrotranscribed from an RNA before its integration in the genome. As discussed elsewhere, these elements have characteristics of both types of elements [13]. The high copy number of MITE elements, as well as the fact that no MITE element has been shown to excise,

CHT1

Figure 2. Alignment of CHT1 and CHT2 sequences. Only sequences flanking Mrs1 insertion are shown. Terminal inverted repeats are given in bold and the target site duplication is underlined. CHT1 and CHT2 fragments were amplified by PCR from W64 maize genomic DNA using two nucleotides corresponding to sequences located within the first (5^{\prime}-AGCAAGGCATATGGGAC- 3^{\prime}) and the fifth (5^{\prime} -AGAGGGTGCAACACTGC- 3^{\prime}) exons of the CHT gene. PCR products were cloned in a pBluescript (Stratagene) T-vector, constructed as described [8] and sequenced by standard procedures.

Figure 3. Analysis of the copy number of Mrs elements in different species. The species from which DNA was obtained and the amount of DNA used is shown on the top of each panel. Filters were hybridized with a Mrs 1 probe at medium stringency $\left(20 \mathrm{mMNa}_{2} \mathrm{HPO}_{4} \mathrm{pH}\right.$ $7.2,1 \%$ SDS, 1 mM EDTA at $50^{\circ} \mathrm{C}$).
seem to indicate a retrotransposition-related mechanism. If MITEs transpose via an RNA intermediate only the elements present in transcribed regions will be able to transpose, since they do not seem to contain internal promoters. The presence of MITE elements within introns, as is the case for the Mrs1 element, could thus be especially significant.

Figure 4. Specific amplification of the Mrs 1 CHT1 region in different species CHT1 was specifically amplified using the same oligonucleotide corresponding to a sequence located within the first exon described in Fig. 2 and a second one (5^{\prime}-CCCTCAATTGGACGAG3^{\prime}) corresponding to a sequence located within the fourth exon of the CHT1 gene. Upper box: electrophoresis of the PCR products obtained; 1, molecular weight marker; 2 , negative control amplification and amplifications obtained with DNA from; 3, Z. mays (W64); 4, Z. mays (P. Toluqueño); 5, M. mexicana; 6, Z. diploperenni; 7, Sorghum. Central box: hybridization with a CHT1 probe. Lower box: hybridization with a Mrs 1 probe. A scheme with the position of the primers and the probes used is shown below. Open boxes indicate exons, solid lines indicate introns and dashed lines indicate a long DNA sequence. Open bars flanked by arrows indicate the Mrs 1 insertion. Solid arrows indicate the position of primers used to amplify specifically CHT1 and solid bars indicate the positions of the probes used for hybridizations.

Acknowledgements

We want to acknowledge the support of Plan Nacional de Investigación Científica y Técnica (grant

BIO94/0734). The work has been carried out within the framework of the Centre de Referència de Biotecnologia de Catalunya. A.R. is recipient of a fellowship from Formación del Personal Investigador. We also wish to thank Drs Valerie Escalettes and José Antonio Martinez-Izquierdo for the critical reading of the manuscript.

References

1. Bansal KC, Viret J-F, Haley J, Khan BM, Schantz R, Bogorad L: Transient expression from $c a b-m 1$ and $r b c S-m 3$ promoter sequences is different in mesophyll and bundle sheath cells in maize leaves. Proc Natl Acad Sci USA 89: 3654-3658 (1992).
2. Bureau TH, Wessler SR: Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 4: 1283-1284 (1992).
3. Bureau TH, Wessler SR: Mobile inverted repeat elements of the Tourist family are associated with the genes of many cereal grasses. Proc Natl Acad Sci USA 91: 1411-1415 (1994).
4. Bureau TH, Wessler SR: Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledoneous and dicotyledoneous plants. Plant Cell 6: 907-916 (1994).
5. Giroux MJ, Clancy M, Baier J, Ingham L, McCarty D, Hannah LC: De novo synthesis of an intron by the maize transposable element Dissociation. Proc Natl Acad Sci USA 91: 1215012154 (1994).
6. Grotewold E, Peterson T: Isolation and characterization of a maize gene encoding chalcone flavone isomerase. Mol Gen Genet 242: 1-8 (1994).
7. Knight ME, Ray JA, Schuch W: Isolation of a gene from maize encoding a chlorophyll a / b-binding protein. Plant Mol Biol 19: 533-536 (1992).
8. Marchuk D, Drumm M, Saulino A, Collins FS: Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucl Acids Res 19: 1154 (1991).
9. Muszynski MG, Gierl A, Peterson PA: Genetic and molecular analysis of a three-component transposable-element system in maize. Mol Gen Genet 237: 105-112 (1993).
10. Pessino S, Caelles C, Puigdomenech P, Vallejos R: Structure and characterization of the gene encoding the ferredoxinNADP reductase-binding protein from Zea mays L. Gene 147: 205-208 (1994).
11. Sullivan TD, Strelow LI, Illingworth CA, Phillips RL, Nelson OE: Analysis of a maize Brittle-1 alleles and a defective Suppressor-Mutator-induced mutable allele. Plant Cell 3: 1337-1348 (1991).
12. Tenzen T, Matsuda Y, Ohtsubo H, Ohtsubo E: Transposition of Trr 1 in rice genomes to 5^{\prime}-PuTAPy- 3^{\prime} sites, duplicating the TA sequence. Mol Gen Genet 245: 441-448 (1994).
13. Wessler SR, Bureau TE, White SE: LTR-retrotransposons and MITEs: important players in the evolution of plant genes. Curr Opin Genet Devel 5: 814-821 (1995).
14. Zack CD, Ferl RJ, Hannah LC: DNA sequence of a shrunken allele of maize: evidence for visitation by insertional sequences. Maydica 31: 5-16(1986).
